Performance comparisons between clustering models for reconstructing NGS results from technical replicates
Résumé
To improve the performance of individual DNA sequencing results, researchers often use replicates from the same individual and various statistical clustering models to reconstruct a high-performance callset. Here, three technical replicates of genome NA12878 were considered and five model types were compared (consensus, latent class, Gaussian mixture, Kamila–adapted k-means, and random forest) regarding four performance indicators: sensitivity, precision, accuracy, and F1-score. In comparison with no use of a combination model, i) the consensus model improved precision by 0.1%; ii) the latent class model brought 1% precision improvement (97%–98%) without compromising sensitivity (= 98.9%); iii) the Gaussian mixture model and random forest provided callsets with higher precisions (both >99%) but lower sensitivities; iv) Kamila increased precision (>99%) and kept a high sensitivity (98.8%); it showed the best overall performance. According to precision and F1-score indicators, the compared non-supervised clustering models that combine multiple callsets are able to improve sequencing performance vs. previously used supervised models. Among the models compared, the Gaussian mixture model and Kamila offered non-negligible precision and F1-score improvements. These models may be thus recommended for callset reconstruction (from either biological or technical replicates) for diagnostic or precision medicine purposes.
Domaines
Statistiques [stat]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|