Optimal matching between curves in a manifold - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Optimal matching between curves in a manifold

Résumé

This paper is concerned with the computation of an optimal matching between two manifold-valued curves. Curves are seen as elements of an infinite-dimensional manifold and compared using a Riemannian metric that is invariant under the action of the reparameterization group. This group induces a quotient structure classically interpreted as the ”shape space”. We introduce a simple algorithm allowing to compute geodesics of the quotient shape space using a canonical decomposition of a path in the associated principal bundle. We consider the particular case of elastic metrics and show simulations for open curves in the plane, the hyperbolic plane and the sphere.
Fichier principal
Vignette du fichier
OptimalMatching.pdf (2.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04374199 , version 1 (08-01-2024)

Identifiants

Citer

Alice Le Brigant, Marc Arnaudon, Frédéric Barbaresco. Optimal matching between curves in a manifold. Geometric Science of Information 2017, 2017, Paris, France. ⟨hal-04374199⟩
47 Consultations
18 Téléchargements

Altmetric

Partager

More