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Optimal matching between curves in a manifold

Alice Le Brigant Marc Arnaudon Frédéric Barbaresco

Abstract

This paper is concerned with the computation of an optimal matching
between two manifold-valued curves. Curves are seen as elements of an
infinite-dimensional manifold and compared using a Riemannian metric
that is invariant under the action of the reparameterization group. This
group induces a quotient structure classically interpreted as the ”shape
space”. We introduce a simple algorithm allowing to compute geodesics
of the quotient shape space using a canonical decomposition of a path in
the associated principal bundle. We consider the particular case of elastic
metrics and show simulations for open curves in the plane, the hyperbolic
plane and the sphere.

1 Introduction

A popular way to compare shapes of curves is through a Riemannian framework.
The set of curves is seen as an infinite-dimensional manifold on which acts the
group of reparameterizations, and is equipped with a Riemannian metric G that
is invariant with respect to the action of that group. Here we consider the set
of open oriented curves in a Riemannian manifold (M, ⟨·, ·⟩) with velocity that
never vanishes, i.e. smooth immersions,

M = Imm([0, 1],M) = {c ∈ C∞([0, 1],M) : c′(t) ̸= 0 ∀t ∈ [0, 1]}.

It is an open submanifold of the Fréchet manifold C∞([0, 1],M) and its tangent
space at a point c is the set of infinitesimal vector fields along the curve c in M ,

TcM = {w ∈ C∞([0, 1], TM) : w(t) ∈ Tc(t)M ∀t ∈ [0, 1]}.

A curve c can be reparametrized by right composition c ◦ φ with an increasing
diffeomorphism φ : [0, 1]→ [0, 1], the set of which is denoted by Diff+([0, 1]). We
consider the quotient space S =M/Diff+([0, 1],M), interpreted as the space of
”shapes” or ”unparameterized curves”. If we restrict ourselves to elements of
M on which the diffeomorphism group acts freely, then we obtain a principal
bundle π : M → S, the fibers of which are the sets of all the curves that
are identical modulo reparameterization, i.e. that project on the same ”shape”
(Figure 1). We denote by c̄ := π(c) ∈ S the shape of a curve c ∈ M. Any
tangent vector w ∈ TcM can then be decomposed as the sum of a vertical part
wver ∈ Verc, that has an action of reparameterizing the curve without changing
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its shape, and a horizontal part whor ∈ Horc = (Verc)
⊥G , G-orthogonal to the

fiber,

TcM∋ w = wver + whor ∈ Verc ⊕Horc,

Verc = kerTcπ = {mv := mc′/|c′| : m ∈ C∞([0, 1],R),m(0) = m(1) = 0} ,
Horc = {h ∈ TcM : Gc(h,mv) = 0, ∀m ∈ C∞([0, 1],R),m(0) = m(1) = 0} .

If we equipM with a Riemannian metric Gc : TcM× TcM→ R, c ∈ M, that
is constant along the fibers, i.e. such that

Gc◦φ(w ◦ φ, z ◦ φ) = Gc(w, z), ∀φ ∈ Diff+([0, 1]), (1)

then there exists a Riemannian metric Ḡ on the shape space S such that π is a
Riemannian submersion from (M, G) to (S, Ḡ), i.e.

Gc(w
hor, zhor) = Ḡπ(c) (Tcπ(w), Tcπ(z)) , ∀w, z ∈ TcM.

This expression defines Ḡ in the sense that it does not depend on the choice of
the representatives c, w and z ([4], §29.21). If a geodesic for G has a horizontal
initial speed, then its speed vector stays horizontal at all times - we say it is a
horizontal geodesic - and projects on a geodesic of the shape space for Ḡ ([4],
§26.12). The distance between two shapes for Ḡ is given by

d̄ (c0, c1) = inf
{
d (c0, c1 ◦ φ) | φ ∈ Diff+([0, 1])

}
.

Solving the boundary value problem in the shape space can therefore be achieved
either through the construction of horizontal geodesics e.g. by minimizing the
horizontal path energy [1],[7], or by incorporating the optimal reparameteriza-
tion of one of the boundary curves as a parameter in the optimization problem
[2],[6],[8]. Here we introduce a simple algorithm that computes the horizontal
geodesic linking an initial curve with fixed parameterization c0 to the closest
reparameterization c1◦φ of the target curve c1. The optimal reparameterization
φ yields what we will call an optimal matching between the curves c0 and c1.

2 The optimal matching algorithm

We want to compute the geodesic path s 7→ c̄(s) between the shapes of two
curves c0 and c1, that is the projection c̄ = π(ch) of the horizontal geodesic
s 7→ ch(s) - if it exists - linking c0 to the fiber of c1 in M, see Figure 1. This
horizontal path verifies ch(0) = c0, ch(1) ∈ π−1(c1) and ∂ch/∂s(s) ∈ Horch(s)
for all s ∈ [0, 1]. Its end point gives the optimal reparameterization c1 ◦φ of the
target curve c1 with respect to the initial curve c0, i.e. such that

d̄(c0, c1) = d(c0, c1 ◦ φ) = d(c0, ch(1)).

In all that follows we identify a path of curves [0, 1] ∋ s 7→ c(s) ∈ M with
the function of two variables [0, 1] × [0, 1] ∋ (s, t) 7→ c(s, t) ∈ M and denote

2



Figure 1: Schematic representation of the shape bundle.

by cs := ∂c/∂s and ct := ∂c/∂t its partial derivatives with respect to s and
t. We decompose any path of curves s 7→ c(s) in M into a horizontal path
reparameterized by a path of diffeomorphisms, i.e. c(s) = chor(s) ◦ φ(s) where
chors (s) ∈ Horchor(s) and φ(s) ∈ Diff+([0, 1]) for all s ∈ [0, 1]. That is,

c(s, t) = chor(s, φ(s, t)) ∀s, t ∈ [0, 1]. (2)

The horizontal and vertical parts of the speed vector of c can be expressed in
terms of this decomposition. Indeed, by taking the derivative of (2) with respect
to s and t we obtain

cs(s) = chors (s) ◦ φ(s) + φs(s) · chort (s) ◦ φ(s), (3a)

ct(s) = φt(s) · chort (s) ◦ φ(s), (3b)

and so if vhor(s, t) := chort (s, t)/|chort (s, t)| denotes the normalized speed vector
of chor, (3b) gives since φt > 0, v(s) = vhor(s) ◦ φ(s). We can see that the
first term on the right-hand side of Equation (3a) is horizontal. Indeed, for any
m : [0, 1] → C∞([0, 1],R) such that m(s, 0) = m(s, 1) = 0 for all s, since G is
reparameterization invariant we have

G
(
chors (s) ◦ φ(s), m(s) · v(s)

)
= G

(
chors (s) ◦ φ(s), m(s) · vhor(s) ◦ φ(s)

)
= G

(
chors (s), m(s) ◦ φ(s)−1 · vhor(s)

)
= G

(
chors (s), m̃(s) · vhor(s)

)
,

with m̃(s) = m(s) ◦ φ(s)−1. Since m̃(s, 0) = m̃(s, 1) = 0 for all s, the vector
m̃(s) ·vhor(s) is vertical and its scalar product with the horizontal vector chors (s)
vanishes. On the other hand, the second term on the right hand-side of Equation
(3a) is vertical, since it can be written

φs(s) · chort ◦ φ(s) = m(s) · v(s),
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with m(s) = |ct(s)|φs(s)/φt(s) verifying m(s, 0) = m(s, 1) = 0 for all s. Finally,
the vertical and horizontal parts of the speed vector cs(s) are given by

cs(s)
ver = m(s) · v(s) = |ct(s)|φs(s)/φt(s) · v(s), (4a)

cs(s)
hor = cs(s)−m(s) · v(s) = chors (s) ◦ φ(s). (4b)

We call chor the horizontal part of the path c with respect to G.

Proposition 1. The horizontal part of a path of curves c is at most the same
length as c

LG(c
hor) ≤ LG(c).

Proof. Since the metric G is reparameterization invariant, the squared norm of
the speed vector of the path c at time s ∈ [0, 1] is given by, if ∥ · ∥2G := G(·, ·),

∥cs(s, ·)∥2G = ∥chors (s, φ(s, ·))∥2G + |φs(s, ·)|2∥chort (s, φ(s, ·)∥2G
= ∥chors (s, ·)∥2G + |φs(s, ·)|2∥chort (s, ·)∥2G,

This gives ∥chors (s)∥G ≤ ∥cs(s)∥ for all s and so LG(c
hor) ≤ LG(c).

Now we will see how the horizontal part of a path of curves can be computed.

Proposition 2 (Horizontal part of a path). Let s 7→ c(s) be a path in M.
Then its horizontal part is given by chor(s, t) = c(s, φ(s)−1(t)), where the path
of diffeomorphisms s 7→ φ(s) is solution of the PDE

φs(s, t) = m(s, t)/|ct(s, t)| · φt(s, t), (5)

with initial condition φ(0, ·) = Id, and where m(s) : [0, 1] → R, t 7→ m(s, t) :=
|cvers (s, t)| is the vertical component of cs(s).

Proof. This is a direct consequence of Equation (4a), which states that the
vertical part of cs(s) is m(s) · v(s) where m(s) = |ct(s)|φs(s)/φt(s).

If we take the horizontal part of the geodesic linking two curves c0 and c1,
we will obtain a horizontal path linking c0 to the fiber of c1 which will no longer
be a geodesic path. However this path reduces the distance between c0 and the
fiber of c1, and gives a ”better” representative c̃1 = c1 ◦φ(1) of the target curve.
By computing the geodesic between c0 and this new representative c̃1, we are
guaranteed to reduce once more the distance to the fiber. The algorithm that
we propose simply iterates these two steps and is detailed in Algorithm 1.

3 Example : elastic metrics

In this section we consider the particular case of the two-parameter family of
elastic metrics, introduced for plane curves by Mio et al. in [5]. We denote by
∇ the Levi-Civita connection of the Riemannian manifold M , and by ∇tw :=
∇ctw, ∇2

tw := ∇ct∇ctw the first and second order covariant derivatives of a
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Data: c0, c1 ∈M
Result: c̃1
Set c̃1 ← c1 and Gap← 2× Threshold;
while Gap > Threshold do

construct the geodesic s 7→ c(s) between c0 and c̃1;

compute the horizontal part s 7→ chor(s) of c;

set Gap← distL2

(
chor(1), c̃1

)
and c̃1 ← chor(1);

end
Algorithm 1: Optimal matching.

vector field w along a curve c of parameter t. For manifold-valued curves,
elastic metrics can be defined for any c ∈ TcM and w, z ∈ TcM by

Ga,b
c (w, z) = ⟨w(0), z(0)⟩+

∫ 1

0

(
a2⟨∇ℓw

N ,∇ℓz
N ⟩+ b2⟨∇ℓw

T ,∇ℓz
T ⟩

)
dℓ, (6)

where dℓ = |c′(t)|dt and ∇ℓ =
1

|c′(t)|∇t respectively denote integration and co-

variant derivation according to arc length. In the following section, we will show
simulations for the special case a = 1 and b = 1/2 : for this choice of coefficients,
the geodesic equations are easily numerically solved [3] if we adopt the so-called
square root velocity representation [6], in which each curve is represented by the
pair formed by its starting point and speed vector renormalized by the square
root of its norm. Let us characterize the horizontal subspace for Ga,b, and give
the decomposition of a tangent vector.

Proposition 3 (Horizontal part of a vector for an elastic metric). Let c ∈ M
be a smooth immersion. A tangent vector h ∈ TcM is horizontal for the elastic
metric (6) if and only if it verifies the ordinary differential equation(

(a/b)2 − 1
)
⟨∇th,∇tv⟩ − ⟨∇2

th, v⟩+ |c′|−1⟨∇tc
′, v⟩⟨∇th, v⟩ = 0. (7)

The vertical and horizontal parts of a tangent vector w ∈ TcM are given by

wver = mv, whor = w −mv,

where the real function m ∈ C∞([0, 1],R) verifies m(0) = m(1) = 0 and

m′′ − ⟨∇tc
′/|c′|, v⟩m′ − (a/b)2|∇tv|2m

= ⟨∇t∇tw, v⟩ −
(
(a/b)2 − 1

)
⟨∇tw,∇tv⟩ − ⟨∇tc

′/|c′|, v⟩⟨∇tw, v⟩.
(8)

Proof. Let h ∈ TcM be a tangent vector. It is horizontal if and only if it
is orthogonal to any vertical vector, that is any vector of the form mv with
m ∈ C∞([0, 1],R) such that m(0) = m(1) = 0. We have ∇t(mv) = m′v+m∇tv
and since ⟨∇tv, v⟩ = 0 we get ∇t(mv)N = m∇tv and ∇t(mv)T = m′v. Since
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m(0) = 0 the non integral part vanishes and the scalar product is written

Ga,b
c (h,mv) =

∫ 1

0

(
a2m⟨∇th,∇tv⟩+ b2m′⟨∇th, v⟩

)
|c′|−1dt

=

∫ 1

0

a2m⟨∇th,∇tv⟩|c′|−1dt−
∫ 1

0

b2m
d

dt

(
⟨∇th, v⟩|c′|−1

)
dt

=

∫ 1

0

m/|c′|
(
(a2 − b2)⟨∇th,∇tv⟩ − b2⟨∇t∇th, v⟩+ b2⟨∇tc

′, v⟩⟨∇th, v⟩|c′|−1
)
dt,

where we used integration by parts. The vector h is horizontal if and only if
Ga,b

c (h,mv) = 0 for all such m, and so we obtain the desired equation. Now
consider a tangent vector w and a real function m : [0, 1]→ R such that m(0) =
m(1) = 0. Then w − mv is horizontal if and only if it verifies the ODE (7).
Noticing that ⟨∇tv, v⟩ = 0, ⟨∇t∇tv, v⟩ = −|∇tv|2 and ∇t∇t(mv) = m′′v +
2m′∇tv +m∇t∇tv, we easily get the desired equation.

This allows us to characterize the horizontal part of a path of curves for
Ga,b.

Proposition 4 (Horizontal part of a path for an elastic metric). Let s 7→ c(s)
be a path inM. Then its horizontal part is given by chor(s, t) = c(s, φ(s)−1(t)),
where the path of diffeomorphisms s 7→ φ(s) is solution of the PDE

φs(s, t) = m(s, t)/|ct(s, t)| · φt(s, t), (9)

with initial condition φ(0, ·) = Id, and where m(s) : [0, 1] → R, t 7→ m(s, t) is
solution for all s of the ODE

mtt − ⟨∇tct/|ct|, v⟩mt − (a/b)2|∇tv|2m
= ⟨∇t∇tcs, v⟩ −

(
(a/b)2 − 1

)
⟨∇tcs,∇tv⟩ − ⟨∇tct/|ct|, v⟩⟨∇tcs, v⟩.

(10)

Proof. This is a direct consequence of Propositions 2 and 3.

We numerically solve the PDE of Proposition 4 using Algorithm 2.

Data: path of curves s 7→ c(s)
Result: path of diffeomorphisms s 7→ φ(s)
for k = 1 to n do

estimate the derivative φt(
k
n , ·);

solve ODE (10) using a finite difference method to obtain m( kn , ·);
set φs(

k
n , t)← m( kn , t)/|ct(

k
n , t)| · φt(

k
n , t) for all t;

propagate φ(k+1
n , t)← φ( kn , t) +

1
nφs(

k
n , t) for all t;

end
Algorithm 2: Decomposition of a path of curves.
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4 Simulations

We test the optimal matching algorithm for the elastic metric with parameters
a = 2b = 1 - for which all the formulas and tools to compute geodesics are
available [3] - and for curves in the plane, the hyperbolic half-plane H2 and
the sphere S2. The curves are discretized and geodesics are computed using a
discrete geodesic shooting method presented in detail in [3]. Useful formulas and
algorithms in H2 and S2 are available in [3] and [8] respectively. Figure 2 shows
results of the optimal matching algorithm for a pair of segments in H2. We
consider 5 different combinations of parameterizations of the two curves, always
fixing the parameterization of the curve on the left-hand side while searching
for the optimal reparameterization of the curve on the right-hand side. On
the top row, the points are ”evenly distributed” along the latter, and on the
bottom row, along the former. For each set of parameterizations, the geodesic
between the initial parameterized curves (more precisely, the trajectories taken
by each point) is shown in blue, and the horizontal geodesic obtained as output
of the optimal matching algorithm is shown in red. The two images on the
bottom right corner show their superpositions, and their lengths are displayed
in Table 3, in the same order as the corresponding images of Figure 2. We can
see that the horizontal geodesics redistribute the points along the right-hand
side curve in a way that seems natural : similarly to the distribution of the
points on the left curve. Their superposition shows that the underlying shapes
of the horizontal geodesics are very similar, which is not the case of the initial
geodesics. The horizontal geodesics are always shorter than the initial geodesics,
as expected, and have always approximatively the same length. This common
length is the distance between the shapes of the two curves. The same exercise
can be carried out on spherical curves (Figure 4) and on plane curves, for which
we show the superposition of the geodesics and horizontal geodesics between
different parameterizations in Figure 5. The execution time varies from a few
seconds to a few minutes, depending on the curves and the ambient space : the
geodesics between plane curves are computed using explicit equations whereas
for curves in a nonlinear manifold, we use a time-consuming geodesic shooting
algorithm.
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Figure 2: Geodesics between parameterized curves (blue) and corresponding
horizontal geodesics (red) in the hyperbolic half-plane, and their superpositions.

Figure 3: Length of the geodesics of the hyperbolic half-plane shown in Figure 2.

0.6287 0.5611 0.6249 0.5633 0.5798 0.5608
0.7161 0.5601 0.7051 0.5601

Figure 4: Initial and horizontal geodesics between spherical parameterized curves.

Figure 5: Superposition of the initial (blue) and horizontal (red) geodesics obtained
for different sets of parameterizations of three pairs of plane curves.
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