Document-Level Planning for Text Simplification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Document-Level Planning for Text Simplification

Résumé

Most existing work on text simplification is limited to sentence-level inputs, with attempts to iteratively apply these approaches to document-level simplification failing to coherently preserve the discourse structure of the document. We hypothesise that by providing a high-level view of the target document, a simplification plan might help to guide generation. Building upon previous work on controlled, sentence-level simplification, we view a plan as a sequence of labels, each describing one of four sentence-level simplification operations (copy, rephrase, split, or delete). We propose a planning model that labels each sentence in the input document while considering both its context (a window of surrounding sentences) and its internal structure (a token-level representation). Experiments on two simplification benchmarks (Newsela-auto and Wikiauto) show that our model outperforms strong baselines both on the planning task and when used to guide document-level simplification models.
Fichier principal
Vignette du fichier
2023.eacl-main.70.pdf (1.24 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04369756 , version 1 (02-01-2024)

Licence

Identifiants

Citer

Liam Cripwell, Joël Legrand, Claire Gardent. Document-Level Planning for Text Simplification. 17th Conference of the European Chapter of the Association for Computational Linguistics, ACL, May 2023, Dubrovnik, Croatia. pp.993-1006, ⟨10.18653/v1/2023.eacl-main.70⟩. ⟨hal-04369756⟩
195 Consultations
121 Téléchargements

Altmetric

Partager

More