FAENet: Frame Averaging Equivariant GNN for Materials Modeling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

FAENet: Frame Averaging Equivariant GNN for Materials Modeling

Résumé

Applications of machine learning techniques for materials modeling typically involve functions known to be equivariant or invariant to specific symmetries. While graph neural networks (GNNs) have proven successful in such tasks, they enforce symmetries via the model architecture, which often reduces their expressivity, scalability and comprehensibility. In this paper, we introduce (1) a flexible framework relying on stochastic frame-averaging (SFA) to make any model E(3)-equivariant or invariant through data transformations. (2) FAENet: a simple, fast and expressive GNN, optimized for SFA, that processes geometric information without any symmetrypreserving design constraints. We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling on the OC20 dataset (S2EF, IS2RE) as well as common molecular modeling tasks (QM9, QM7-X). A package implementation is available at https: //faenet.readthedocs.io.
Fichier principal
Vignette du fichier
2305.05577 (8).pdf (792.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04368760 , version 1 (01-01-2024)

Identifiants

  • HAL Id : hal-04368760 , version 1

Citer

Alexandre Duval, Victor Schmidt, Alex Hernandez, Santiago Miret, Fragkiskos D. Malliaros, et al.. FAENet: Frame Averaging Equivariant GNN for Materials Modeling. ICML 2023 - International Conference on Machine Learning, Jul 2023, Hawaii, United States. ⟨hal-04368760⟩
47 Consultations
43 Téléchargements

Partager

More