A hierarchical C-S-H/organic superstructure with high stiffness, super-low porosity, and low mass density - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Cement and Concrete Research Année : 2024

A hierarchical C-S-H/organic superstructure with high stiffness, super-low porosity, and low mass density

Xinping Zhu
  • Fonction : Auteur
  • PersonId : 1291756
Laurent Brochard
Matthieu Vandamme
Qiang Ren
  • Fonction : Auteur
Chen Li
  • Fonction : Auteur
Zhengwu Jiang
  • Fonction : Auteur

Résumé

Herein, a hierarchical cementitious calcium silicate hydrate (C-S-H) superstructure with high Young's modulus, super-low porosity, and low mass density is reported. It has a very high Young's modulus at 47.5 GPa, three times higher than our reference synthetic C-S-H. Its specific surface area is merely 0.4509 m2/g, two orders of magnitude smaller than our reference synthetic C-S-H and the most common construction materials. In addition, the skeletal density of this composite is 1.96 g/cm3, much lower than C-S-H and hardened cement paste. In a density-Young's modulus diagram, this composite is located at the intersection of metals, ceramics, and polymers, approaching the carbon fiber region, implying lightweight and stiff characteristics. The cryogenic stability is also evaluated. It shows a satisfying applicability potential for cryogenic engineering with stable pore structure and nanoscopic mechanical properties. We confirm that the assembly of hierarchical C-S-H superstructure requires both hydrophilic amide and anionic carboxylic groups.
Fichier non déposé

Dates et versions

hal-04355038 , version 1 (20-12-2023)

Identifiants

Citer

Xinping Zhu, Laurent Brochard, Matthieu Vandamme, Qiang Ren, Chen Li, et al.. A hierarchical C-S-H/organic superstructure with high stiffness, super-low porosity, and low mass density. Cement and Concrete Research, 2024, 176, pp.107407. ⟨10.1016/j.cemconres.2023.107407⟩. ⟨hal-04355038⟩
20 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More