Harris-type results on geometric and subgeometric convergence to equilibrium for stochastic semigroups - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2023

Harris-type results on geometric and subgeometric convergence to equilibrium for stochastic semigroups

Résumé

We provide simple and constructive proofs of Harris-type theorems on the existence and uniqueness of an equilibrium and the speed of equilibration of discrete-time and continuous-time stochastic semigroups. Our results apply both to cases where the relaxation speed is exponential (also called geometric) and to those with no spectral gap, with non-exponential speeds (also called subgeometric). We give constructive estimates in the subgeometric case and discrete-time statements which seem both to be new. The method of proof also differs from previous works, based on semigroup and interpolation arguments, valid for both geometric and subgeometric cases with essentially the same ideas. In particular, we present very simple new proofs of the geometric case.
Fichier principal
Vignette du fichier
1-s2.0-S0022123622004505-main.pdf (666.88 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04353188 , version 1 (13-09-2024)

Licence

Identifiants

Citer

José Cañizo,, Stéphane Mischler. Harris-type results on geometric and subgeometric convergence to equilibrium for stochastic semigroups. Journal of Functional Analysis, 2023, 284 (7), pp.109830. ⟨10.1016/j.jfa.2022.109830⟩. ⟨hal-04353188⟩
59 Consultations
5 Téléchargements

Altmetric

Partager

More