Counting and Computing Join-Endomorphisms in Lattices - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Counting and Computing Join-Endomorphisms in Lattices

Résumé

Structures involving a lattice and join-endomorphisms on it are ubiquitous in computer science. We study the cardinality of the set E(L) of all join-endomorphisms of a given finite lattice L. In particular, we show that when L is Mn, the discrete order of n elements extended with top and bottom, |E(L)| = n!Ln(-1) + (n + 1) 2 where Ln(x) is the Laguerre polynomial of degree n. We also study the following problem: Given a lattice L of size n and a set S ⊆ E(L) of size m, find the greatest lower bound E(L) S. The join-endomorphism E(L) S has meaningful interpretations in epistemic logic, distributed systems, and Aumann structures. We show that this problem can be solved with worst-case time complexity in O(n + m log n) for powerset lattices, O(mn 2) for lattices of sets, and O(mn + n 3) for arbitrary lattices. The complexity is expressed in terms of the basic binary lattice operations performed by the algorithm.
Fichier principal
Vignette du fichier
main.pdf (469.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04352165 , version 1 (19-12-2023)

Identifiants

Citer

Santiago Quintero, Sergio Ramirez, Camilo Rueda, Frank Valencia. Counting and Computing Join-Endomorphisms in Lattices. Relational and Algebraic Methods in Computer Science - 18th International Conference, RAMiCS 2020, Apr 2020, Palaiseau, France. pp.253-269, ⟨10.1007/978-3-030-43520-2_16⟩. ⟨hal-04352165⟩
35 Consultations
27 Téléchargements

Altmetric

Partager

More