Algebraic area of cubic lattice walks - Archive ouverte HAL
Article Dans Une Revue Physical Review E Année : 2023

Algebraic area of cubic lattice walks

Résumé

We obtain an explicit formula to enumerate closed random walks on a cubic lattice with a specified length and 3D algebraic area. The 3D algebraic area is defined as the sum of algebraic areas obtained from the walk's projection onto the three Cartesian planes. This enumeration formula can be mapped onto the cluster coefficients of three types of particles that obey quantum exclusion statistics with statistical parameters $g=1$, $g=1$, and $g=2$, respectively, subject to the constraint that the numbers of $g=1$ (fermions) exclusion particles of two types are equal.

Dates et versions

hal-04346857 , version 1 (15-12-2023)

Identifiants

Citer

Li Gan. Algebraic area of cubic lattice walks. Physical Review E , 2023, 108, pp.054104. ⟨10.1103/PhysRevE.108.054104⟩. ⟨hal-04346857⟩
19 Consultations
0 Téléchargements

Altmetric

Partager

More