Integration of tidal range energy with undersea pumped storage - Archive ouverte HAL Access content directly
Journal Articles Renewable Energy Year : 2018

Integration of tidal range energy with undersea pumped storage


The deployment of tidal technology is affected by the general bottlenecks associated with all new renewables in respect of finance and integration with the grid. In this research, a development strategy is defined for tidal range projects based on geodynamics, civil engineering, and economics with the aim of assisting policy makers and industry. Criteria related to hydrodynamics, bathymetry, marine structure safety and cost recovery apply to relevant sites and to real data power prices. The case study described is that of the Bay of Bourgneuf on the French Atlantic coast, where a tidal range power plant of 900 MW could optimally be built with respect to sedimentation, water depth, and tidal coefficients. It has been determined that a 30 m-high artificial dam could maximise the harvestable energy (3 TWh). Numerical simulations show that a tidal plant sized at just 700 MW would be cost-efficient, due to the constraints of the grid and to high power curtailment rates (30%). The expected value of the Levelised Cost of Electricity would be around 200€2016/MWh. Integration into the grid could be improved through addition of an innovative underwater energy storage system, rated to one third of the size of the tidal plant. The economics would improve (the LCOE would drop to 170€2016/MWh) due to lower curtailment and to price arbitrage opportunities. Issues related to missing investor money (>3Bln€2016) and unquantifiable positive externalities such as flood protection, energy independency, and clean energy provision are discussed, underpinning the need for regulator support.
Fichier principal
Vignette du fichier
loisel2018.pdf (1.15 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-04344612 , version 1 (01-03-2024)



Rodica Loisel, Martin Sanchez-Angulo, Franck Schoefs, Alexandre Gaillard. Integration of tidal range energy with undersea pumped storage. Renewable Energy, 2018, 126, pp.38-48. ⟨10.1016/j.renene.2018.03.037⟩. ⟨hal-04344612⟩
378 View
6 Download



Gmail Facebook X LinkedIn More