Proving local invariants in ASTDs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Proving local invariants in ASTDs

Résumé

This paper proposes a formal approach for generating proof obligations to verify local invariants in an Algebraic State Transition Diagram (\astd). \astd is a graphical specification language that allows for the combination of extended hierarchical state machines using CSP-like process algebra operators. Invariants can be declared at any level in a specification (state, ASTD), fostering the decomposition of system invariants into modular local invariants which are easier to prove, because proof obligations are smaller. The proof obligations take advantage of the structure of an \astd to use local invariants as hypotheses. \astd operators covered are automaton, sequence, closure and guard. Proof obligations are discharged using Rodin. When proof obligations cannot be proved, ProB can be used to identify counter-examples to help in correcting/reinforcing the invariant or the specification.
Fichier principal
Vignette du fichier
PO_ASTD_GRIC_Overleaf.pdf (378.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04344486 , version 1 (14-12-2023)

Identifiants

Citer

Quelen Cartellier, Marc Frappier, Amel Mammar. Proving local invariants in ASTDs. International Conference on Formal Engineering Methods (ICFEM ), Nov 2023, Brisbane, QLD, Australia. ⟨10.1007/978-981-99-7584-6_14⟩. ⟨hal-04344486⟩
91 Consultations
35 Téléchargements

Altmetric

Partager

More