Conformal graphs as twisted partition functions - Archive ouverte HAL
Article Dans Une Revue Physical Review Letters Année : 2024

Conformal graphs as twisted partition functions

Manthos Karydas
  • Fonction : Auteur
Songyuan Li
  • Fonction : Auteur
Anastasios C Petkou
  • Fonction : Auteur

Résumé

We show that a class of $L$-loop conformal ladder graphs correspond to twisted partition functions of free massive complex scalars in $d=2L+1$ dimensions. The graphs arise as four-point functions in certain two- and four-dimensional conformal fishnet models. The twisted thermal two-point function of the scalars is a generator of such conformal graphs for all loops. We argue that this correspondence is seeded by a system of two decoupled harmonic oscillators twisted by an imaginary chemical potential. We find a number of algebraic and differential relations among the conformal graphs which mirror the underlying free dynamics.

Dates et versions

hal-04344239 , version 1 (14-12-2023)

Identifiants

Citer

Manthos Karydas, Songyuan Li, Anastasios C Petkou, Matthieu Vilatte. Conformal graphs as twisted partition functions. Physical Review Letters, 2024, 132 (23), pp.231601. ⟨10.1103/PhysRevLett.132.231601⟩. ⟨hal-04344239⟩
14 Consultations
0 Téléchargements

Altmetric

Partager

More