Visualizing the DNA repair process by a photolyase at atomic resolution - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Science Année : 2023

Visualizing the DNA repair process by a photolyase at atomic resolution

Manuel Maestre-Reyna
Po-Hsun Wang
Eriko Nango
Yuhei Hosokawa
Martin Saft
Antonia Furrer
Cheng-Han Yang
Eka Putra Gusti Ngurah Putu
Wen-Jin Wu
Hans-Joachim Emmerich
Nicolas Caramello
Sophie Franz-Badur
Chao Yang
Sylvain Engilberge
Maximilian Wranik
Hannah Louise Glover
Tobias Weinert
Hsiang-Yi Wu
Cheng-Chung Lee
Wei-Cheng Huang
Kai-Fa Huang
Yao-Kai Chang
Jiahn-Haur Liao
Jui-Hung Weng
Wael Gad
Chiung-Wen Chang
  • Fonction : Auteur
Allan Pang
Kai-Chun Yang
  • Fonction : Auteur
Wei-Ting Lin
Yu-Chen Chang
Dardan Gashi
  • Fonction : Auteur
Emma Beale
Dmitry Ozerov
Karol Nass
Gregor Knopp
Philip Johnson
Claudio Cirelli
Chris Milne
Camila Bacellar
Michihiro Sugahara
  • Fonction : Auteur
Shigeki Owada
Yasumasa Joti
Ayumi Yamashita
Rie Tanaka
Tomoyuki Tanaka
  • Fonction : Auteur
Fangjia Luo
Kensuke Tono
Maisa Alkheder Alahmad
Filipp Bezold
Valerie Fuchs
Petra Gnau
  • Fonction : Auteur
Stephan Kiontke
Lukas Korf
Viktoria Reithofer
Christian Joshua Rosner
  • Fonction : Auteur
Elisa Marie Seiler
Mohamed Watad
  • Fonction : Auteur
Laura Werel
  • Fonction : Auteur
Roberta Spadaccini
Junpei Yamamoto
So Iwata
Dongping Zhong
Jörg Standfuss
Antoine Royant
Yoshitaka Bessho
Lars-Oliver Essen
Ming-Daw Tsai

Résumé

Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.

Mots clés

Domaines

Cristallographie
Fichier non déposé

Dates et versions

hal-04334937 , version 1 (11-12-2023)

Identifiants

Citer

Manuel Maestre-Reyna, Po-Hsun Wang, Eriko Nango, Yuhei Hosokawa, Martin Saft, et al.. Visualizing the DNA repair process by a photolyase at atomic resolution. Science, 2023, 382 (6674), ⟨10.1126/science.add7795⟩. ⟨hal-04334937⟩
17 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More