How do recycled concrete aggregates modify the shrinkage and self-healing properties? - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Cement and Concrete Composites Année : 2018

How do recycled concrete aggregates modify the shrinkage and self-healing properties?

Résumé

This paper presents the main results of a research carried out to analyze the mechanical properties, intrinsic permeability, drying shrinkage, carbonation, and the self-healing potential of concrete incorporating recycled concrete aggregates. The recycled concrete mixtures were designed by replacing natural aggregates with 0%, 30%, and 100% of recycled concrete gravel (RG) and 30% of recycled concrete sand (RS). The water to equivalent binder ratio was kept constant and recycled concrete aggregates were initially at saturated surface dried (SSD) state. The contribution of the porosity of natural and recycled aggregates to the porosity of concrete was estimated to understand the evolution of the intrinsic permeability and the open porosity. At long term, the maximum variation of drying shrinkage magnitude due to recycled concrete gravels did not exceed 15%. The correlation between drying shrinkage and mass-loss through “drying depth” concept showed that recycled concrete aggregates are affected by drying as soon as concrete is exposed to desiccation. A good correlation between 1-day compressive strength and 18-month carbonation depth was observed. The recycled concrete aggregates presented a good potential for self-healing as the relative recovery of cracks reached up to 60%.
Fichier non déposé

Dates et versions

hal-04333291 , version 1 (09-12-2023)

Identifiants

Citer

Sonagnon Medjigbodo, Ahmed Bendimerad, Emmanuel Rozière, Ahmed Loukili. How do recycled concrete aggregates modify the shrinkage and self-healing properties?. Cement and Concrete Composites, 2018, 86, pp.72-86. ⟨10.1016/j.cemconcomp.2017.11.003⟩. ⟨hal-04333291⟩
41 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More