A Domain-Independent Method for Thematic Dataset Building from Social Media: The Case of Tourism on Twitter - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

A Domain-Independent Method for Thematic Dataset Building from Social Media: The Case of Tourism on Twitter

Résumé

In this article, we propose a generic method to build thematic datasets from social media. Many research works gather their data from social media, but the extraction processes used are mostly ad hoc and do not follow a formal or standardized method. We aim at extending the processes currently used by designing an iterative, generic and domain-independent approach to build thematic datasets from social media with three modulable dimensions at its core: spatial, temporal and thematic. We experiment our method using data extracted from Twitter to build a thematic dataset about tourism in a highly touristic region. This dataset is then evaluated using both quantitative and qualitative metrics to highlight the value of this method. The application to this use case shows the effectiveness of our domain-independent method to generate thematic datasets from Twitter data.
Fichier principal
Vignette du fichier
WISE_2022_VFinale (1).pdf (694.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04326727 , version 1 (06-12-2023)

Identifiants

Citer

Maxime Masson, Christian Sallaberry, Rodrigo Agerri, Marie-Noelle Bessagnet, Philippe Roose, et al.. A Domain-Independent Method for Thematic Dataset Building from Social Media: The Case of Tourism on Twitter. International Conference on Web Information System Engineering - WISE 2022, WISE Society, Nov 2022, Biarritz, France. pp.11-20, ⟨10.1007/978-3-031-20891-1_2⟩. ⟨hal-04326727⟩

Collections

UNIV-PAU LIUPPA
25 Consultations
69 Téléchargements

Altmetric

Partager

More