LiteBIRD Science Goals and Forecasts. A Case Study of the Origin of Primordial Gravitational Waves using Large-Scale CMB Polarization
P Campeti
,
E Komatsu
,
C Baccigalupi
,
M Ballardini
,
N Bartolo
,
A Carones
,
J Errard
(1)
,
F Finelli
,
R Flauger
,
S Galli
(2)
,
G Galloni
,
S Giardiello
,
M Hazumi
,
S Henrot-Versillé
(3)
,
L.T Hergt
,
K Kohri
,
C Leloup
,
J Lesgourgues
,
J Macias-Perez
(4)
,
E Martínez-González
,
S Matarrese
,
T Matsumura
,
L Montier
(5)
,
T Namikawa
,
D Paoletti
,
D Poletti
,
M Remazeilles
,
M Shiraishi
,
B van Tent
(3)
,
M Tristram
(3)
,
L Vacher
,
N Vittorio
,
G Weymann-Despres
(3)
,
A Anand
,
J Aumont
(5)
,
R Aurlien
,
A.J Banday
(5)
,
R.B Barreiro
,
A Basyrov
,
M Bersanelli
,
D Blinov
,
M Bortolami
,
T Brinckmann
,
E Calabrese
,
F Carralot
,
F.J Casas
,
L Clermont
,
F Columbro
,
G Conenna
,
A Coppolecchia
,
F Cuttaia
,
G d'Alessandro
,
P de Bernardis
,
M de Petris
,
S Della Torre
,
E Di Giorgi
,
P Diego-Palazuelos
,
H.K Eriksen
,
C Franceschet
,
U Fuskeland
,
M Galloway
,
M Georges
,
M Gerbino
,
M Gervasi
,
T Ghigna
,
C Gimeno-Amo
,
E Gjerløw
,
A Gruppuso
,
J Gudmundsson
,
N Krachmalnicoff
,
L Lamagna
,
M Lattanzi
,
M Lembo
,
A.I Lonappan
,
S Masi
,
M Massa
,
S Micheli
,
A Moggi
,
M Monelli
,
G Morgante
,
B Mot
(5)
,
L Mousset
(6, 5)
,
R Nagata
,
P Natoli
,
A Novelli
,
I Obata
,
L Pagano
(7)
,
A Paiella
,
V Pavlidou
,
F Piacentini
,
M Pinchera
,
G Pisano
,
G Puglisi
,
N Raffuzzi
,
A Ritacco
(8)
,
A Rizzieri
(1)
,
M Ruiz-Granda
,
G Savini
,
D Scott
,
G Signorelli
,
S.L Stever
,
N Stutzer
,
R.M Sullivan
,
A Tartari
,
K Tassis
,
L Terenzi
,
K.L Thompson
,
P Vielva
,
I.K Wehus
,
Y Zhou
1
APC (UMR_7164) -
AstroParticule et Cosmologie
2 IAP - Institut d'Astrophysique de Paris
3 IJCLab - Laboratoire de Physique des 2 Infinis Irène Joliot-Curie
4 LPSC - Laboratoire de Physique Subatomique et de Cosmologie
5 IRAP - Institut de recherche en astrophysique et planétologie
6 LPENS - Laboratoire de physique de l'ENS - ENS Paris
7 IAS - Institut d'astrophysique spatiale
8 Astrophysique
2 IAP - Institut d'Astrophysique de Paris
3 IJCLab - Laboratoire de Physique des 2 Infinis Irène Joliot-Curie
4 LPSC - Laboratoire de Physique Subatomique et de Cosmologie
5 IRAP - Institut de recherche en astrophysique et planétologie
6 LPENS - Laboratoire de physique de l'ENS - ENS Paris
7 IAS - Institut d'astrophysique spatiale
8 Astrophysique
P Campeti
- Fonction : Auteur
E Komatsu
- Fonction : Auteur
C Baccigalupi
- Fonction : Auteur
M Ballardini
- Fonction : Auteur
N Bartolo
- Fonction : Auteur
A Carones
- Fonction : Auteur
F Finelli
- Fonction : Auteur
R Flauger
- Fonction : Auteur
G Galloni
- Fonction : Auteur
S Giardiello
- Fonction : Auteur
M Hazumi
- Fonction : Auteur
L.T Hergt
- Fonction : Auteur
K Kohri
- Fonction : Auteur
C Leloup
- Fonction : Auteur
J Lesgourgues
- Fonction : Auteur
J Macias-Perez
- Fonction : Auteur
- PersonId : 830870
- IdHAL : juan-francisco-macias-perez
E Martínez-González
- Fonction : Auteur
S Matarrese
- Fonction : Auteur
T Matsumura
- Fonction : Auteur
T Namikawa
- Fonction : Auteur
D Paoletti
- Fonction : Auteur
D Poletti
- Fonction : Auteur
M Remazeilles
- Fonction : Auteur
M Shiraishi
- Fonction : Auteur
L Vacher
- Fonction : Auteur
N Vittorio
- Fonction : Auteur
A Anand
- Fonction : Auteur
R Aurlien
- Fonction : Auteur
R.B Barreiro
- Fonction : Auteur
A Basyrov
- Fonction : Auteur
M Bersanelli
- Fonction : Auteur
D Blinov
- Fonction : Auteur
M Bortolami
- Fonction : Auteur
T Brinckmann
- Fonction : Auteur
E Calabrese
- Fonction : Auteur
F Carralot
- Fonction : Auteur
F.J Casas
- Fonction : Auteur
L Clermont
- Fonction : Auteur
F Columbro
- Fonction : Auteur
G Conenna
- Fonction : Auteur
A Coppolecchia
- Fonction : Auteur
F Cuttaia
- Fonction : Auteur
G d'Alessandro
- Fonction : Auteur
P de Bernardis
- Fonction : Auteur
M de Petris
- Fonction : Auteur
S Della Torre
- Fonction : Auteur
E Di Giorgi
- Fonction : Auteur
P Diego-Palazuelos
- Fonction : Auteur
H.K Eriksen
- Fonction : Auteur
C Franceschet
- Fonction : Auteur
U Fuskeland
- Fonction : Auteur
M Galloway
- Fonction : Auteur
M Georges
- Fonction : Auteur
M Gerbino
- Fonction : Auteur
M Gervasi
- Fonction : Auteur
T Ghigna
- Fonction : Auteur
C Gimeno-Amo
- Fonction : Auteur
E Gjerløw
- Fonction : Auteur
A Gruppuso
- Fonction : Auteur
J Gudmundsson
- Fonction : Auteur
N Krachmalnicoff
- Fonction : Auteur
L Lamagna
- Fonction : Auteur
M Lattanzi
- Fonction : Auteur
M Lembo
- Fonction : Auteur
A.I Lonappan
- Fonction : Auteur
S Masi
- Fonction : Auteur
M Massa
- Fonction : Auteur
S Micheli
- Fonction : Auteur
A Moggi
- Fonction : Auteur
M Monelli
- Fonction : Auteur
G Morgante
- Fonction : Auteur
R Nagata
- Fonction : Auteur
P Natoli
- Fonction : Auteur
A Novelli
- Fonction : Auteur
I Obata
- Fonction : Auteur
A Paiella
- Fonction : Auteur
V Pavlidou
- Fonction : Auteur
F Piacentini
- Fonction : Auteur
M Pinchera
- Fonction : Auteur
G Pisano
- Fonction : Auteur
G Puglisi
- Fonction : Auteur
N Raffuzzi
- Fonction : Auteur
M Ruiz-Granda
- Fonction : Auteur
G Savini
- Fonction : Auteur
D Scott
- Fonction : Auteur
G Signorelli
- Fonction : Auteur
S.L Stever
- Fonction : Auteur
N Stutzer
- Fonction : Auteur
R.M Sullivan
- Fonction : Auteur
A Tartari
- Fonction : Auteur
K Tassis
- Fonction : Auteur
L Terenzi
- Fonction : Auteur
K.L Thompson
- Fonction : Auteur
P Vielva
- Fonction : Auteur
I.K Wehus
- Fonction : Auteur
Y Zhou
- Fonction : Auteur
Résumé
We study the possibility of using the $LiteBIRD$ satellite $B$-mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar "axionlike" field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from $LiteBIRD$ satellite simulations, which complement and expand previous studies in the literature. We find that $LiteBIRD$ will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the $TB$ and $EB$ angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of $LiteBIRD$ will reside in $BB$ angular power spectra rather than in $TB$ and $EB$ correlations.
Mots clés
power spectrum
angular dependence
gravitational radiation
primordial
cosmic background radiation
polarization
gauge field theory
fluctuation
vacuum
space-time
inflation
model
LiteBIRD
satellite
slow-roll approximation
ionization
Starobinsky model
recombination
signature
axion
spectator
correlation
pseudoscalar