Symbolic regression driven by dimensional analysis for the automated discovery of physical laws and constants of nature - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Symbolic regression driven by dimensional analysis for the automated discovery of physical laws and constants of nature

Résumé

Given the abundance of empirical laws in astrophysics, the rise of agnostic and automatic methods to derive them from data is of great interest. This concept is embodied in symbolic regression, which seeks to identify the best functional form fitting a dataset. Here we present a protocol for deducing both physical laws but also the constants of nature appearing in those with their associated units. Our method is grounded in the Physical Symbolic Optimization framework, which integrates dimensional analysis with deep reinforcement learning. We showcase our approach on a panel of equations from (astro)-physics.
Fichier principal
Vignette du fichier
Tenachi-SF2A2023.pdf (269.97 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04325284 , version 1 (07-12-2023)

Licence

Identifiants

  • HAL Id : hal-04325284 , version 1

Citer

Wassim Tenachi, Rodrigo Ibata, Foivos I Diakogiannis. Symbolic regression driven by dimensional analysis for the automated discovery of physical laws and constants of nature. Journées 2023 de la Société Française d’Astronomie & d’Astrophysique (SF2A)., Jun 2023, Strasbourg, France. pp.107-108. ⟨hal-04325284⟩
88 Consultations
63 Téléchargements

Partager

More