On the Learnability of Software Router Performance via CPU Measurements - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

On the Learnability of Software Router Performance via CPU Measurements

Résumé

In the last decade the ICT community observed a growing popularity of software networking paradigms. This trend consists in moving network applications from static, expensive, hardware equipment (e.g. router, switches, firewalls) towards flexible, cheap pieces of software that are executed on a commodity server. In this context, a server owner may provide the server resources (CPUs, NICs, RAM) for customers, following a Service-Level Agreement (SLA) about clients' requirements. The problem of resource allocation is typically solved by overprovisioning, as the clients' application is opaque to the server owner, and the resource required by clients' applications are often unclear or very difficult to quantify. This paper shows a novel approach that exploits machine learning techniques in order to infer the input traffic load (i.e., the expected network traffic condition) by solely looking at the runtime CPU footprint.

Dates et versions

hal-04322404 , version 1 (04-12-2023)

Identifiants

Citer

Charles Shelbourne, Leonardo Linguaglossa, Aldo Lipani, Tianzhu Zhang, Fabien Geyer. On the Learnability of Software Router Performance via CPU Measurements. CoNEXT '19: The 15th International Conference on emerging Networking EXperiments and Technologies, Dec 2019, Orlando FL USA, United States. pp.23-25, ⟨10.1145/3360468.3366776⟩. ⟨hal-04322404⟩
42 Consultations
0 Téléchargements

Altmetric

Partager

More