On the asymptotic distribution of the maximum sample spectral coherence of Gaussian time series in the high dimensional regime - Archive ouverte HAL
Article Dans Une Revue Journal of Multivariate Analysis Année : 2023

On the asymptotic distribution of the maximum sample spectral coherence of Gaussian time series in the high dimensional regime

Résumé

We investigate the asymptotic distribution of the maximum of a frequency smoothed estimate of the spectral coherence of a M-variate complex Gaussian time series with mutually independent components when the dimension M and the number of samples N both converge to infinity. If B denotes the smoothing span of the underlying smoothed periodogram estimator, a type I extreme value limiting distribution is obtained under the rate assumptions M N → 0 and M B → c ∈ (0, +∞). This result is then exploited to build a statistic with controlled asymptotic level for testing independence between the M components of the observed time series. Numerical simulations support our results.
Fichier principal
Vignette du fichier
JMVA-final.pdf (444.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Domaine public

Dates et versions

hal-04322300 , version 1 (04-12-2023)

Licence

Domaine public

Identifiants

Citer

Philippe Loubaton, Alexis Rosuel, Pascal Vallet. On the asymptotic distribution of the maximum sample spectral coherence of Gaussian time series in the high dimensional regime. Journal of Multivariate Analysis, 2023, 194, pp.105124. ⟨10.1016/j.jmva.2022.105124⟩. ⟨hal-04322300⟩
25 Consultations
35 Téléchargements

Altmetric

Partager

More