Gardener’s Hyperbolas and the Dragged-Point Principle - Archive ouverte HAL
Article Dans Une Revue The American Mathematical Monthly Année : 2021

Gardener’s Hyperbolas and the Dragged-Point Principle

Résumé

We propose a new simple construction of hyperbolas, via a string passing through the foci, that shares properties of the classic “gardener’s ellipse” construction and Perrault’s construction of the tractrix as the locus of a dragged point, subject to frictional forces, at the end of a link of fixed length. We show that a frictional device such as this, with a single frictional element, traces the same locus regardless of the friction model, provided only that this is isotropic. This allows the introduction of a “purely geometrical” principle for tractional constructions more general than that of Huygens (1693).

Dates et versions

hal-04318371 , version 1 (01-12-2023)

Identifiants

Citer

Robert Dawson, Pietro Milici, Frédérique Plantevin. Gardener’s Hyperbolas and the Dragged-Point Principle. The American Mathematical Monthly, 2021, 128 (10), pp.911-921. ⟨10.1080/00029890.2021.1982634⟩. ⟨hal-04318371⟩
21 Consultations
0 Téléchargements

Altmetric

Partager

More