A Linear Perspective on Cut-Elimination for Non-wellfounded Sequent Calculi with Least and Greatest Fixed-Points - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

A Linear Perspective on Cut-Elimination for Non-wellfounded Sequent Calculi with Least and Greatest Fixed-Points

Résumé

Abstract This paper establishes cut-elimination for $\mathsf {\mu LL^\infty }$ , $\mathsf {\mu LK^\infty }$ and $\mathsf {\mu LJ^\infty }$ , that are non-wellfounded sequent calculi with least and greatest fixed-points, by expanding on prior works by Santocanale and Fortier [20] as well as Baelde et al. [3, 4]. The paper studies a fixed-point encoding of $\textsf{LL}$ exponentials in order to deduce those cut-elimination results from that of $\mathsf {\mu MALL^\infty }$ . Cut-elimination for $\mathsf {\mu LK^\infty }$ and $\mathsf {\mu LJ^\infty }$ is obtained by developing appropriate linear decorations for those logics.
Fichier principal
Vignette du fichier
978-3-031-43513-3_12.pdf (731.97 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04308897 , version 1 (05-12-2023)

Identifiants

Citer

Alexis Saurin. A Linear Perspective on Cut-Elimination for Non-wellfounded Sequent Calculi with Least and Greatest Fixed-Points. TABLEAUX 2023 - 32nd International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, Sep 2023, Prague, Czech Republic. pp.203-222, ⟨10.1007/978-3-031-43513-3_12⟩. ⟨hal-04308897⟩
36 Consultations
45 Téléchargements

Altmetric

Partager

More