On Adaptive Stochastic Optimization for Streaming Data: A Newton's Method with O(dN) Operations
Résumé
Stochastic optimization methods encounter new challenges in the realm of streaming, characterized by a continuous flow of large, high-dimensional data. While first-order methods, like stochastic gradient descent, are the natural choice, they often struggle with ill-conditioned problems. In contrast, second-order methods, such as Newton's methods, offer a potential solution, but their computational demands render them impractical. This paper introduces adaptive stochastic optimization methods that bridge the gap between addressing ill-conditioned problems while functioning in a streaming context. Notably, we present an adaptive inversion-free Newton's method with a computational complexity matching that of first-order methods, $\mathcal{O}(dN)$, where $d$ represents the number of dimensions/features, and $N$ the number of data. Theoretical analysis confirms their asymptotic efficiency, and empirical evidence demonstrates their effectiveness, especially in scenarios involving complex covariance structures and challenging initializations. In particular, our adaptive Newton's methods outperform existing methods, while maintaining favorable computational efficiency.
Origine | Fichiers produits par l'(les) auteur(s) |
---|