Room Temperature Optically and Magnetically Active Edges in Phosphorene Nanoribbons - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Room Temperature Optically and Magnetically Active Edges in Phosphorene Nanoribbons

Adam J. Clancy
  • Fonction : Auteur
Naitik A. Panjwani
  • Fonction : Auteur
Nicholas J. M. Popiel
  • Fonction : Auteur
Thomas G. Parton
  • Fonction : Auteur
Loren Picco
  • Fonction : Auteur
Sascha Feldmann
  • Fonction : Auteur
Rebecca R. C. Shutt
  • Fonction : Auteur
Remington Carey
  • Fonction : Auteur
Eva S. Y. Aw
  • Fonction : Auteur
Thomas J. Macdonald
  • Fonction : Auteur
Marion E. Severijnen
  • Fonction : Auteur
Sandra Kleuskens
  • Fonction : Auteur
Richard H. Friend
  • Fonction : Auteur
Jan Behrends
  • Fonction : Auteur
Peter C. M. Christianen
  • Fonction : Auteur
Christopher A. Howard
  • Fonction : Auteur
Akshay Rao
  • Fonction : Auteur
Raj Pandya
  • Fonction : Auteur

Résumé

Nanoribbons - nanometer wide strips of a two-dimensional material - are a unique system in condensed matter physics. They combine the exotic electronic structures of low-dimensional materials with an enhanced number of exposed edges, where phenomena including ultralong spin coherence times, quantum confinement and topologically protected states can emerge. An exciting prospect for this new material concept is the potential for both a tunable semiconducting electronic structure and magnetism along the nanoribbon edge. This combination of magnetism and semiconducting properties is the first step in unlocking spin-based electronics such as non-volatile transistors, a route to low-energy computing, and has thus far typically only been observed in doped semiconductor systems and/or at low temperatures. Here, we report the magnetic and semiconducting properties of phosphorene nanoribbons (PNRs). Static (SQUID) and dynamic (EPR) magnetization probes demonstrate that at room temperature, films of PNRs exhibit macroscopic magnetic properties, arising from their edge, with internal fields of ~ 250 to 800 mT. In solution, a giant magnetic anisotropy enables the alignment of PNRs at modest sub-1T fields. By leveraging this alignment effect, we discover that upon photoexcitation, energy is rapidly funneled to a dark-exciton state that is localized to the magnetic edge and coupled to a symmetry-forbidden edge phonon mode. Our results establish PNRs as a unique candidate system for studying the interplay of magnetism and semiconducting ground states at room temperature and provide a stepping-stone towards using low-dimensional nanomaterials in quantum electronics.
Fichier principal
Vignette du fichier
2211.11374.pdf (1.91 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04306374 , version 1 (24-11-2023)

Identifiants

Citer

Arjun Ashoka, Adam J. Clancy, Naitik A. Panjwani, Nicholas J. M. Popiel, Alex Eaton, et al.. Room Temperature Optically and Magnetically Active Edges in Phosphorene Nanoribbons. 2023. ⟨hal-04306374⟩
10 Consultations
21 Téléchargements

Altmetric

Partager

More