On marginal markovianity in gaussian pairwise Markov models - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

On marginal markovianity in gaussian pairwise Markov models

Résumé

We consider two discrete-time processes X and Y, the pair (X,Y) being Gaussian, homogeneous and Markovian. Such models, called "Gaussian homogeneous pairwise Markov models" (GH-PMMs), extend the classical Gaussian homogeneous hidden Markov models (GH-HMMs), also called Gaussian homogeneous state space models. In GH-PMMs, neither X nor Y is necessarily Markovian, and the problem addressed is to find conditions on the GH-PMM parameters for X (or Y) to be Markovian. We give necessary and sufficient conditions for real-valued X and Y, and necessary conditions for the general multivariate case. The advantage of GH-PMMs over GH-HMMs is that they are more general and still allow various treatments such as smoothing, filtering or forecasting. A practical application of the proposed contributions is that when, for a given smoothing, filtering or forecasting problem, the specified conditions cannot be justified, GH-PMMs should be used rather than GH-HMMs.
Fichier principal
Vignette du fichier
HAL.pdf (535.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04296719 , version 1 (20-11-2023)

Identifiants

  • HAL Id : hal-04296719 , version 1

Citer

Wojciech Pieczynski. On marginal markovianity in gaussian pairwise Markov models. 2023. ⟨hal-04296719⟩
88 Consultations
45 Téléchargements

Partager

More