Error Exploration for Automatic Abstract Meaning Representation Parsing - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Error Exploration for Automatic Abstract Meaning Representation Parsing

Maria Boritchev
Johannes Heinecke
  • Fonction : Auteur
  • PersonId : 1070091

Résumé

Following the data-driven methods of evaluation and error analysis in meaning representation parsing presented in (Buljan et al., 2022), we performed an error exploration of an Abstract Meaning Representation (AMR) parser. Our aim is to perform a diagnosis of the types of errors found in the output of the tool in order to implement adaptation and correction strategies to accommodate these errors. This article presents the exploration, its results, the strategies we implemented, and the effect of these strategies on the performances of the tool. Though we did not observe a significative rise on average in the performances of the tool, we got much better results in some cases using our adaptation techniques.
Fichier principal
Vignette du fichier
2023.iwcs-1.25.pdf (241.71 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04296128 , version 1 (22-11-2023)

Licence

Identifiants

  • HAL Id : hal-04296128 , version 1

Citer

Maria Boritchev, Johannes Heinecke. Error Exploration for Automatic Abstract Meaning Representation Parsing. 15th International Conference on Computational Semantics, Jun 2023, Nancy, France. ⟨hal-04296128⟩
44 Consultations
69 Téléchargements

Partager

More