A Practical Algorithm for Volume Estimation based on Billiard Trajectories and Simulated Annealing
Résumé
We tackle the problem of efficiently approximating the volume of convex polytopes, when these are given in three different representations: H-polytopes, which have been studied extensively, V-polytopes, and zonotopes (Z-polytopes). We design a novel practical Multiphase Monte Carlo algorithm that leverages random walks based on billiard trajectories, as well as a new empirical convergence test and a simulated annealing schedule of adaptive convex bodies. After tuning several parameters of our proposed method, we present a detailed experimental evaluation of our tuned algorithm using a rich dataset containing Birkhoff polytopes and polytopes from structural biology. Our open-source implementation tackles problems that have been intractable so far, offering the first software to scale up in thousands of dimensions for H-polytopes and in the hundreds for V- and Z-polytopes on moderate hardware. Last, we illustrate our software in evaluating Z-polytope approximations.