The Maximum Zero-Sum Partition Problem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

The Maximum Zero-Sum Partition Problem

Résumé

We study the Maximum Zero-Sum Partition problem (or MZSP), defined as follows: given a multiset S={a1, a2, ..., an} of integers ai∈Z* such that Σi=1..n ai=0, find a maximum cardinality partition {S1, S2, ... , Sk} of S such that, for every 1≤ i ≤ k, Σaj ∈ Si aj=0. Solving MZSP is useful in genomics for computing evolutionary distances between pairs of species. Our contributions are a series of algorithmic results concerning MZSP, in terms of complexity, (in)approximability, with a particular focus on the fixed-parameter tractability of MZSP with respect to either (i) the size k of the solution, (ii) the number of negative (resp. positive) values in S and (iii) the largest integer in S.
Fichier principal
Vignette du fichier
paper_36.pdf (349.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04293802 , version 1 (11-03-2024)

Identifiants

Citer

Guillaume Fertin, Oscar Fontaine, Géraldine Jean, Stéphane Vialette. The Maximum Zero-Sum Partition Problem. 25th International Computer Symposium, ICS 2022, Dec 2022, Taoyuan, Taiwan. pp.73-85, ⟨10.1007/978-981-19-9582-8_7⟩. ⟨hal-04293802⟩
184 Consultations
117 Téléchargements

Altmetric

Partager

More