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Abstract. We study theMaximum Zero-Sum Partition problem (or
MZSP), de�ned as follows: given a multiset S = {a1, a2, . . . , an} of inte-
gers ai ∈ Z∗ such that

∑n
i=1 ai = 0, �nd a maximum cardinality partition

{S1, S2, . . . , Sk} of S such that, for every 1 ≤ i ≤ k,
∑
aj∈Si aj = 0. Solv-

ing MZSP is useful in genomics for computing evolutionary distances
between pairs of species. Our contributions are a series of algorithmic
results concerning MZSP, in terms of complexity, (in)approximability,
with a particular focus on the �xed-parameter tractability of MZSP with
respect to either (i) the size k of the solution, (ii) the number of negative
(resp. positive) values in S and (iii) the largest integer in S.

1 Introduction

In this paper, we study the Maximum Zero-Sum Partition (or MZSP).

Maximum Zero-Sum Partition (MZSP)
Instance : A multiset S = {a1, a2, . . . , an} of numbers ai ∈ Z∗ s.t.

∑n
i=1 ai = 0.

Output : A maximum cardinality partition S = {S1, S2, . . . , Sk} of S such that,
for every 1 ≤ i ≤ k,

∑
aj∈Si aj = 0.

This problem emerged in bioinformatics, where determining the distance be-
tween two genomes was studied [1]. The distance formula in that context depends
on a parameter to be optimized, which directly relates to answeringMZSP. How-
ever, the MZSP problem in itself was not central to the results in [1], and thus
has not been studied per se in that paper. Hence, the goal of the present paper
is to extensively study the MZSP problem from an algorithmic point of view.

De�nitions and Notations. For any integer n, J1, nK denotes the set of integers
from 1 to n. Given a (multi)set S of integers and an integer p, we say that S sums
to p when the sum of the elements of S is equal to p. When p = 0, we say that S is
a zero-sum (multi)set. For any instance S of MZSP, we let neg (resp. pos) denote
the number of negative (resp. positive) integers in S and m = min{neg, pos}. We
denote by n∗ the number of distinct values in S, by b =

∑n
i=1dlog2 (|ai|)e the
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number of bits needed to encode S (e.g. when S is stored as a list, in which each
element is binary encoded), and by B = maxi∈J1,nK{|ai|}. The cardinality of an
optimal partition of S, i.e. the size of the solution, is denoted by k. For example,
if S = {−7,−7,−7,−1,−1,−1, 2, 3, 3, 4, 4, 4, 4}, then n = 13, neg = 6, pos = 7,
m = 6, n∗ = 5, B = 7 and it can be seen that the optimal solution is k = 4:
for instance, S1 = S2 = {−7, 4, 3}, S3 = {−7,−1, 4, 4} and S4 = {−1,−1, 2}
form a solution. Unary MZSP denotes MZSP for which unary encoding of the
input instance is used. For any positive integer p, p-MZSP denotes the decision
version of MZSP, in which, given p and a zero-sum integer multiset S, we ask
whether there exists a zero-sum partition S of S such that |S| ≥ p. We will also
often use the O∗ notation, as frequently done in parameterized complexity: for a
given problem whose size of the input is n and parameter is k, O∗(f(k)) stands
for O(f(k) · poly(n)). In other words, O∗ only describes the exponential part of
the running time (in k) and discards the polynomial factor (in n).

First observations. Note that if we denote by −S the multiset S to which all
signs have been switched, then −S is a valid instance for MZSP, and both S
and −S have the same optimum k. Consequently, any result that applies to
neg (resp. pos) applies to pos (resp. neg), and thus to m. Note also that an
m-size zero-sum partition of S is necessarily optimal, since at least one positive
(resp. negative) element of S needs to be present in any Si from the partition.
In other words, we always have k ≤ m. For any given p ∈ N∗, a Yes-instance
for p-MZSP is also a Yes-instance for p′-MZSP as long as p′ ∈ J1, pK. Indeed,
merging any two sets in a size-p zero-sum partition of S yields a size-(p−1) zero-
sum partition of S. Finally, observe that if an integer a and its opposite −a both
belong to S, then there always exists an optimal solution S = {S1, S2, . . . , Sk}
in which Si = {−a, a} for some i ∈ J1, nK. Indeed, suppose −a and a both
belong to S, and observe an optimal solution S = {S1, S2, . . . , Sk} in which
Si 6= {−a, a} for every i ∈ J1, kK. Clearly, no Si is such that {−a, a} ⊂ Si,
otherwise we could partition Si into {−a, a} and Si\{−a, a}, both summing to
zero, contradicting the optimality of S. Thus −a ∈ Sx and a ∈ Sy for some
1 ≤ x 6= y ≤ k. Now consider the following partition S′ = {S′1, S′2, . . . , S′k} of S:
(i) S′i = Si for every i ∈ J1, kK such that i 6= x and i 6= y, (ii) S′x = {−a, a} and
(iii) S′y = (Sx∪Sy)\{−a, a}. Every S′i, i ∈ J1, kK, sums to zero, and |S| = |S′| = k.

In this paper, we study the MZSP problem under an algorithmic viewpoint,
and, in particular, discuss its computational complexity, approximability and
�xed-parameter tractability with respect to n, n∗, m, B and k (see Table 1).

2 Computational Complexity of MZSP

Theorem 1. MZSP is strongly NP-complete, even if each Si in the solution S
contains at most four elements.

Proof. The proof is by reduction from 3-Partition, which has been proved to
be strongly NP-complete [3], and whose de�nition is as follows.
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Parameter Results

n Strongly NP-complete (Thm 1)
No 2o(n)bO(1) algorithm unless ETH fails (Thm 4)

FPT (Thm 5)
No approximation within ratio O(n1−ε) (Thm 7)

m NP-complete, even if bounded (Thm 2)
k NP-complete, even if bounded (Thm 2)

m W[1]-hard (Thm. 8)
Unary encoded instance XP(Cor. 2)

k W[1]-hard (Cor. 1)
Unary encoded instance XP(Thm 9)

n∗ No 2o(n
∗)bO(1) algorithm unless ETH fails (Thm 10)

XP(Thm 11)
B FPT(Thm 13)

n∗+k FPT(Thm 12)

Table 1. Summary of our main results, in relation to parameters n,m, k, n∗, B and b.

3-Partition
Instance : An integer C, a multiset X = {x1, x2, . . . , x3p} of integers such that

(i)
∑3p
i=1 xi = C · p and (ii) ∀xi ∈ X, C4 < xi <

C
2 .

Question : Does there exist a partition {X1, X2, . . . , Xp} of X such that, for
every i ∈ J1, pK,

∑
xj∈Xi xj = C ?

Let I = (C,X) be an instance of 3-Partition, and let S be the multiset such
that S = {x1, . . . , x3p,−C, . . . ,−C}, where −C appears p times in S. Note that,
by de�nition of 3-Partition, the sum of all elements in S is equal to zero, hence
S is an instance of MZSP. We now show that I = (C,X) is a Yes-instance for
3-Partition i� MZSP (with instance S) has a solution of cardinality p.

(⇒) If I is aYes-instance for 3-Partition, there exists tj = (xij,1 , xij,2 , xij,3),
j ∈ J1, pK, such that xij,1 + xij,2 + xij,3 = C. In particular, for every j ∈ J1, pK,
Sj = {xij,1 , xij,2 , xij,3 ,−C} is a size-p partition of S in which every Sj sums to
zero. Moreover, such partition is optimal: since neg = p, no zero-sum partition
of S can contain strictly more than p sets.

(⇐) Suppose there exists a solution of MZSP of cardinality p, say S =
{S1, S2, . . . , Sp}. Since any zero-sum subset in S contains at least one negative
element from S, every Sj , j ∈ J1, pK, contains exactly one negative element,
namely −C. Since, in 3-Partition, every xi satis�es

C
4 < xi <

C
2 , exactly 3 such

elements are required to sum to C. Thus, any Sj , j ∈ J1, pK, contains 3 elements
of the form xi, together with −C. Since each Sj sums to zero, {x1, . . . , x3p} can
be partitioned in triplets, each summing to C, i.e. I = (C,X) is a Yes-instance
for 3-Partition.

In unary, 3-Partition and MZSP are both encoded in Θ(p · C) space. As
3-Partition is strongly NP-complete, MZSP is also strongly NP-complete. ut
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As discussed above, �nding a solution S to MZSP where every zero-sum set
Si in S satis�es |Si| = 2 (if such a solution exists) is easy: look for two opposite
values, combine them, and iterate. Theorem 1 proves that solving MZSP when
every Si contains 4 elements is (strongly) NP-complete, which rules out parame-
ter �maximum size of an Si� for FPT considerations. Note that the case |Si| = 3
(or equivalently |Si| ≤ 3) has been shown to be strongly NP-complete in [1].

Theorem 2. MZSP is NP-complete, even when k and m are bounded.

Proof. We show NP-completeness of MZSP in the speci�c case m = k = 2, by
reduction from Partition which is known to be NP-complete [8].

Partition
Instance : A multiset X = {x1, x2, . . . , xn} of integers from N∗.
Question : Does there exist a partition {X1, X2} of X s.t.

∑
xi∈X1

xi =∑
xj∈X2

xj ?

Let X be an instance of Partition. We can always assume
∑n
i=1 xi to be

even, otherwise we have a No-instance. Thus assume
∑n
i=1 xi = 2N . The MZSP

instance we build from X is S = X ∪ {−N,−N}. We show that X is a Yes-
instance for Partition i� MZSP yields a size-2 zero-sum partition for S.

(⇒) Suppose there exists a partition {X1, X2} of X such that
∑
xi∈X1

xi =∑
xj∈X2

xj . We thus have
∑
xi∈X1

xi =
∑
xj∈X2

xj = N , and {X1 ∪{−N}, X2 ∪
{−N}} is a zero-sum partition of S. Moreover, this partition is optimal since
m = neg = 2 and k ≤ m.

(⇐) Suppose there exists a zero-sum partition of cardinality k = 2 of S, say
S = {S1, S2}. Because neg = 2, we know that S1 (resp. S2) contains exactly
one negative integer; thus, both in S1 and S2, this integer is −N . Assume S1 =
X1 ∪ {−N} and S2 = X2 ∪ {−N}. In that case, {X1, X2} is a partition of X,
and because both S1 and S2 sum to zero, we have

∑
xi∈X1

xi =
∑
xj∈X2

xj = N .
Thus X is a Yes-instance for Partition. ut

Although we just showed that MZSP is strongly NP-complete in general,
and remains NP-complete when k is bounded, we show there exists a pseudo-
polynomial algorithm that solves MZSP in the case k = 2.

Theorem 3. 2-MZSP can be solved in pseudopolynomial time.

The following result gives two lower bounds on the time to solveMZSP, both
based on the Exponential-Time Hypothesis (ETH, see e.g. [4] for a de�nition).
Recall that b is the size of the input S, assuming it is binary encoded.

Theorem 4. Unless ETH fails, MZSP cannot be solved (i) in 2o(n) · bO(1) or

(ii) in 2o(
√
b).

We now show that the above ETH bound based on n is essentially tight.

Theorem 5. MZSP is solvable in O∗(2n).
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Proof. We solveMZSP by dynamic programming. Given an instance S of MZSP,
we create a dynamic programming 1-dimensional table T indexed by the subsets
of S. We set T [∅] to 0. Then, for increasing i ∈ J1, nK, and for every size-i subset
Pi of S, we �ll T [Pi] using the following rule:

T [Pi] =

{
maxa∈Pi{T [Pi\{a}]} if Pi does not sum to 0
maxa∈Pi{T [Pi\{a}]}+ 1 otherwise

The optimal value k for MZSP is then found in T [S], and an optimal zero-
sum partition of S can be found by backtracking from that value. The space
and time complexity of the above algorithm is O∗(2n), since it takes polyno-
mial time to �ll any of the 2n elements in T . It remains to show correctness.
For this, for any subset P of S, we denote by kP the cardinality of a maximum
zero-sum subpartition of P , where the term subpartition describes a partition
of a subset of P . Our goal is to show that for any P , T [P ] = kP . This is done
by induction on i = |P |. When i = 0, this trivially holds as T [∅] is set to 0.
Suppose now that for some i ∈ J0, n − 1K, any P such that |P | = i satis�es
T [P ] = kP . Let us now observe a set P of cardinality i + 1. If P does not
sum to zero, let us consider a maximum cardinality zero-sum subpartition of P ,
say (A1, . . . , AkP ). Since P does not sum to zero, there exists a ∈ P such that

a /∈
⋃kP
i=1Ai. Thus (A1, . . . , AkP ) is a maximum cardinality zero-sum subpar-

tition of P\{a}, otherwise this would contradict the cardinality maximality of
(A1, . . . , AkP ). Thus kP\{a} = kP . Since T [P\{a}] = kP\{a}, we have T [P ] ≥ kP
by de�nition of T [P ]. Conversely, if a ∈ P and (A1, . . . , AkP\{a}) is a zero-sum
subpartition of P\{a}, then (A1, . . . , AkP\{a}) is a zero-sum subpartition of P .
Thus kP\{a} ≤ kP , which means T [P\{a}] ≤ kP and thus implies T [P ] ≤ kP .
Altogether, we have T [P ] = kP . Now if P sums to zero, let (A1, . . . , AkP ) be a

maximum cardinality zero-sum partition of P . We thus have P =
⋃kP
j=1Aj . Let

a ∈ AkP (note that a exists, since AkP is non-empty). Thus (A1, . . . , AkP−1) is
a maximum zero-sum subpartition of P\{a}, and hence kP = kP\{a} +1, which
implies T [P ] ≥ kP . Conversely, if a ∈ P , then a ∈ Aj for a given j ∈ J1, kP K.
Using similar arguments as previously, we can prove that kP = kP\{a} + 1, and
thus T [P ] ≤ kP . Altogether, we have T [P ] = kP . We conclude that T [P ] = kP
for any P ⊆ S. In particular, T [S] contains a maximum cardinality zero-sum
partition of S. By backtracking in T , the sought partition can be found in poly-
nomial time, which solves MZSP. ut

The previous theorem is based on the fact that the number of distinct subsets
in S is upper bounded by O(2n). It is also possible to upper bound this number
by a function of b, the number of bits needed to binary encode S.

Theorem 6. MZSP is solvable in 2O(
b

log b ).

Proof. Let us partition S into Sp = {ai ∈ S s.t. |ai| ≤
√
b} and Sq = {ai ∈

S s.t. |ai| >
√
b}. Let us also denote, for any multiset E, by P(E) the set of

subsets of E (e.g. P({2, 3, 3}) = {∅, {2}, {3}, {2, 3}, {3, 3}, {2, 3, 3}}). In that

case, we have |P(Sp)| ≤ (b + 1)2
√
b: indeed, by de�nition any element a ∈ Sp
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satis�es |a| ≤
√
b. Moreover, a appears at most b times in Sp, since any a

needs at least one bit to be encoded, while b bits are enough to encode S. Thus
Sp contains at most 2

√
b di�erent numbers, each of them appearing at most

b times in Sp. Hence |P(Sp)| ≤ (b + 1)2
√
b ≤ 22

√
b log (b+1) ≤ 22

b
log b . On the

other hand, Sq contains elements of size at least
√
b. Then Sq cannot be of

cardinality greater than 2 b
log b , otherwise encoding Sq would require more than b

bits ; thus |P(Sq)| ≤ 22
b

log b . Since Sp and Sq form a partition of S, we have that
|P(S)| = |P(Sp)| · |P(Sq)| ≤ 24

b
log b . Since the dynamic programming algorithm

from proof of Theorem 5 solves MZSP and has running time in O∗(|P(S)|), we
conclude that MZSP can be solved in 2O(

b
log b ), which proves the theorem. ut

We now end this section by turning our attention to the inapproximability
of MZSP, in Theorem 7 below.

Theorem 7. Unless P=NP,MZSP cannot be approximated within ratio O(n1−ε)
for any ε > 0.

Proof. As for Theorem 2, we prove the result by reduction from Partition,
which is known to be NP-complete [8]. Let X = {x1, x2, . . . , x`} be an instance

of Partition, and let
∑`
i=1 xi = 2N with N ≥ 1. We can indeed assume∑`

i=1 xi to be non-zero and even, otherwise the problem is trivially answered.
The reduction is as follows: let q ≥ 1 be any integer, and let us recursively
build a set {p0, p1, . . . , pq} of integers. More precisely, we set p0 = 1, and pi =
(2iN + 1)pi−1 for any i ∈ J1, qK. We note that for any 0 ≤ j < i ≤ q, pj divides
pi. Based on X and on the values p0, p1, . . . , pq, we now construct the multiset
S =

⋃q
i=0{piX,−Npi,−N

∑q
i=0 pi} where, for any i ∈ J0, qK, piX denotes the

values obtained by multiplying each element of X by pi. It can be seen that S
sums to zero, and is thus a valid instance of MZSP. It can also be seen that the
above reduction takes polynomial-time, as long as q remains polynomial in the
input size of Partition. Intuitively, the above reduction consists in �copying�,
a certain amount of times, an (expanded) instance X of Partition, so that the
solution size of MZSP on S increases, while maintaining the property that the
di�erent �expanded copies� of X in S do not mutually interact.

Let us now prove correctness of our reduction, by showing the following:
(i) X is a Yes-instance for Partition i� (ii) MZSP for S yields a partition of
cardinality q + 2 i� (iii) MZSP for S yields a partition of cardinality 2.

((i) ⇒ (ii)) Suppose X is a Yes-instance for Partition. Then there exists
P ⊂ X such that

∑
a∈P a = N . By construction, for every i ∈ J0, qK,

∑
a∈P pia =

Npi. Hence, for every negative number −s in S (s being either −Npi for some
i ∈ J0, qK, or −N

∑q
i=0 pi), it is possible to �nd a subset of S summing to

Npi, and moreover any pair of such sets is mutually disjoint. Hence S can be
partitioned into zero-sum subsets, and the cardinality of such a partition is q+2.

((ii)⇒ (iii)) If MZSP for S yields a partition of cardinality q+2, and since
q + 2 ≥ 2 then, by merging any q + 1 sets in this partition, we obtain a size-2
zero-sum partition.
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((iii) ⇒ (i)) Suppose there exists a zero-sum partition of MZSP for S, of
cardinality 2. In that case, there exists a non-empty zero-sum (multi)set P ⊂ S
that does not contain the negative integer −N

∑q
i=0 pi. Let us denote i0 the

smallest index i ∈ J0, qK such that −Npi belongs to P . Note that for all i ∈
J0, i0 − 1K, we have piX ∩ P = ∅: indeed, suppose by contradiction that this is

not the case, and let A be the sum of the elements of
(⋃i0−1

i=0 piX
)
∩ P . Then

we have A ≤ (1 + p1 + · · ·+ pi0−1) · 2N , hence A ≤ i0 · 2N · pi0−1, which yields
A < pi0 . In particular, pi0 does not divide A, since A 6= 0. As pi0 divides every
other element of P , we conclude that A = 0, which is the sought contradiction.

Now, let us consider P ′ = P mod pi0+1. From the above, the only elements
from P that induce non zero elements in P ′ are the elements of pi0X ∩ P ,
together with −Npi0 . We thus conclude there exists a (multi)set K ⊂ X such
that

∑
a∈K pi0a ≡ Npi0 mod pi0+1. Since pi0+1 > 2Npi0 ,

∑
a∈K pi0a = Npi0 ,

and thus
∑
a∈K a = N . In other words, we have a Yes-instance for Partition.

Now we have proved correctness of our reduction, let us turn to proving our
inapproximability result. Let ε be any strictly positive value, and suppose that
there exists an approximation algorithm A for MZSP, of ratio ρ = O(n1−ε)
with n = |S|. Take now an instance X of Partition, and recall that ` = |X|.
Let C be a constant such that ρ ≤ Cn1−ε for su�ciently large n. We let q =

max(C
1

1−ε−1, (C
1

1−ε (`+1)+1)
1
ε−1−1), and we proceed with the above mentioned

reduction by building the MZSP instance S based on X and on parameter q.
We have that n = |S| = (`+ 1)(q + 1) + 1.

Then, q+1

C
1

1−ε
≥ 1 and (q+1)

1
1−ε−1−C

1
1−ε (`+1) ≥ 1 which yields q+1

C
1

1−ε
· ((q+

1)
1

1−ε−1−C
1

1−ε (`+1)) ≥ 1 and C((`+1)(q+1)+1)1−ε ≤ q+1. We thus conclude
that Cn1−ε ≤ q + 1. We now apply A on S, and solve it polynomially within
factor ρ ≤ Cn1−ε. Thus we obtain ρ ≤ q+1, hence ρ < q+2. However, we know
from the above that if we have a Yes-instance for Partition, then there exists
a zero-sum partition of S of cardinality q+2. In that case, the solution provided
by the approximation algorithm A is a zero-sum partition of S of cardinality
c ≥ q+2

ρ > 1. Conversely, if A provides a zero-sum partition of cardinality c > 1,
then such zero-sum partition shows that X is a Yes-instance for Partition.

Altogether, if there exists an approximation algorithm A for MZSP of ratio
ρ = O(n1−ε), it is possible to polynomially solve Partition: a contradiction,
unless P=NP, to the fact that Partition is NP-complete [8]. ut

3 Parameterized Complexity of MZSP

Parameters k andm. We �rst consider �xed-parameterized complexity of MZSP
with respect to the size k of the solution. On the way, we will also discuss
parameter m = min{neg, pos}, as we always have m ≥ k. By Theorem 2, we
know that, unless P=NP, MZSP is not FPT with respect to parameter k (resp.
m), since MZSP is NP-complete even in the case where both these values are
constant. The following theorem and corollary show W[1]-hardness of Unary
MZSP with respect to the same parameters.
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Theorem 8. Unary MZSP parameterized by m is W[1]-hard.

Theorem 8 implies the following corollary, as we always have m ≥ k.
Corollary 1. Unary MZSP parameterized by k is W[1]-hard.

Proof. (of Theorem 8) Let us assume that integers are encoded in unary. We
reduce from Unary Bin-Packing, which is known to beW[1]-hard with respect
to parameter �size of the solution� [6], to Unary MZSP. We �rst recall the
de�nition of Bin-Packing (presented here in its decision version):

Bin-Packing
Instance : a multiset of strictly positive integers P = {w1, . . . , wn}, an integer
W , an integer t.
Question : Does there exist a partition {J1, . . . , Jt} of P such that

∑
wj∈Ji wj ≤

W for every i ∈ J1, tK ?
As mentioned above,Unary Bin-Packing is Bin-Packing in which all inte-

gers are assumed to be encoded in unary; besides, Unary Bin-Packing, param-
eterized by the number t of bins, is known to be W[1]-hard [6]. Let I = (P,W, t)
be an instance of Unary Bin-Packing. Moreover, assume

∑n
i=1 wi = tW , since

Unary Bin-Packing remains W[1]-hard parameterized by the number t of bins
under this condition [6]. Let us now construct the following instance of MZSP:
S = {w1, . . . , wn,−W, . . . ,−W︸ ︷︷ ︸

t

}. Note that we have m = t. We now show that

MZSP admits a t-size zero-sum partition i� I = (P,W, t) is a Yes-instance for
Unary Bin-Packing.

(⇒) Suppose (P,W, t) is a Yes-instance for Unary Bin-Packing. Thus
there exists a partition {J1, . . . , Jt} of P such that

∑
wj∈Ji wj ≤ W for every

i ∈ J1, tK. However, since we assume
∑n
i=1 wi = tW , we conclude that every

Ji, i ∈ J1, tK, is such that
∑
wj∈Ji wj = W . Hence, {A1, A2, . . . , At}, where

Ai = Ji ∪ {−W} for every i ∈ J1, tK, is a t-size zero-sum partition of S.
(⇐) Conversely, suppose there exists a t-size zero-sum partition {A1, A2, . . . , At}

of S. Since S contains exactly t negative numbers, this implies that every Ai,
i ∈ J1, tK, contains exactly one occurrence of −W . Thus {J1, J2, . . . , Jt}, where
Ji = Ai\{−W} for every i ∈ J1, tK, is a partition of P . Moreover, since each Ai
sums to zero, we know that each Ji sums to W , which ensures that (P,W, t) is
a Yes-instance for Unary Bin-Packing.

The above reduction is a valid parameterized reduction, since parameter t
for Unary Bin-Packing is strictly equal to parameter m for Unary MZSP.
Moreover, the instance S of Unary MZSP that we built satis�es k = m. ut

Theorem 8 suggests that, even encoded in unary, MZSP admits no FPT
algorithm parameterized by k. What we can show, in the following theorem, is
that MZSP encoded in unary is in XP when parameterized by k.

Theorem 9. Unary MZSP is in XP parameterized by k.

Since we always have m ≥ k, Theorem 9 implies the following corollary.

Corollary 2. Unary MZSP is in XP when parameterized by m.
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Parameter number of distinct values n∗. We now discuss parameter n∗, for which
we �rst provide a complexity lower bound based on ETH. Recall that b is the
(binary encoded) size of the input instance S.
Theorem 10. Unless ETH fails, MZSP cannot be solved in 2o(n

∗)bO(1).

Proof. The proof is based on a combination of (i) a reduction from 3-SAT to
Subset-Sum presented in [7] and inspired from [10] and (ii) the reduction from
Subset-Sum to MZSP from proof of Theorem 4. More precisely, starting from
any instance of 3-SAT with n variables and m clauses, an instance of Subset-
Sum containing n′ = 2n+2m integers, among which 2n+m are pairwise distinct,
is constructed. Moreover, in proof of Theorem 4, the instance S of MZSP built
from Subset-Sum contains n′′ = n′ + 2 = 2n + 2m + 2 integers, among which
n∗ = 2n +m + 2 are pairwise distinct. Under ETH, 3-SAT cannot be solved in
2o(n). If we combine this information with the sparsi�cation method [5] (which
allows to consider only 3-SAT instances for which m = O(n)) and the above
argument, we conclude that, under ETH,MZSP cannot be solved in 2o(n

∗)bO(1).
ut

Concerning parameterized complexity with respect to n∗, we suspect MZSP
to beW[1]-hard parameterized by n∗, but the question remains open. Meanwhile,
we are able to prove (see Theorem 11) that the problem is in XP with respect
to n∗. The rationale for this result is that the multisets that constitute any
maximum zero-sum partition of S are few, and that we can e�ciently compute
them. In order to prove Theorem 11, we need to introduce several de�nitions,
and �rst prove two propositions (Propositions 1 and 2).

Let us suppose that S is a multiset containing n∗ distinct values, denoted
a1, . . . , an∗ . We introduce several notions: given any multiset M built from
a1, . . . , an∗ , we call multiplicity multiset ofM the multiset {u1, u2, . . . , un∗} rep-
resenting the mutiplicities of each ai in M: more precisely, for any i ∈ J1, n∗K,
ui ∈ N is the number of times ai appears inM. With this notation, we can de�ne
a partial order ≤ on multiplicity multisets as follows: let u = {u1, u2, . . . , un∗}
and v = {v1, v2, . . . , vn∗} be two multiplicity multisets; we write u ≤ v whenever
ui ≤ vi for every i ∈ J1, n∗K. Now let s = {s1, s2, . . . , sn∗} be the multiplicity
multiset of S. We �rst de�ne two sets, respectively named K and D: K is the set
of irreducible multiplicity multisets of S leading to zero-sum subsets of S, and
D is the set of all zero-sum subsets of S. In the following, for simplicity we write
u = 0 for any vector u whenever all its coordinates are equal to 0. Formally, K
and D are de�ned as follows:

K =
{
u ∈ Nn∗

∣∣∣∑n∗

i=1 uiai = 0, u 6= 0 and

∀ v ∈ Nn∗ , v ≤ u and
∑n∗

i=1 viai = 0⇒ v = 0 or v = u
}
and

D =
{
u ∈ Nn∗

∣∣∣u ≤ s, u 6= 0 and
∑n∗

i=1 uiai = 0
}
.

Any maximum zero-sum partition of S is induced by elements of K∩D only.

We de�ne a third set Z as follows: Z =
{
u ∈ Nn∗

∣∣∣u 6= 0 and
∑n∗

i=1 uiai = 0
}
.

Note that both K and D are included in Z. We are now interested in two
properties, related to the above de�nitions. We begin with Proposition 1.
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Algorithm 1 XP algorithm for solving MZSP, parameterized by n∗

1: Compute D
2: Initialize T
3: for every i ∈ J1, nK do
4: for every u ∈ D do

5: for every v ∈ D do

6: if v + u ∈ D then

7: T [v + u] = max(T [v] + 1, T [v + u])
8: end if

9: end for

10: end for

11: end for

12: return T [s]

Proposition 1. Let U be a subset of Z such that K∩D ⊆ U . There exists a size-
p zero-sum partition of S i� there exists ` ≥ p elements of U , say u1, u2, . . . , u`

such that
∑`
i=1 u

i = s.

For solving p-MZSP, it thus su�ces to compute K ∩D, and to test whether
it is possible to reach s, using p or more elements of K ∩ D. Before that, we
discuss the maximum cardinalities of K and D (see Proposition 2), which will
be useful to evaluate the time complexity to generate these sets.

Proposition 2. D ⊆ J0, nKn
∗
and K ⊆ J0, n∗B − 1Kn

∗
.

In order to compute D (resp. K), it thus su�ces to generate each element
of J0, nKn

∗
(resp. J0, n∗B− 1Kn

∗
), and check for each of them whether it belongs

to D (resp. K). For each element of J0, nKn
∗
, checking its membership to D

can be achieved in O(n2 logB), thus D can be computed in O(nn
∗+2 log(B)).

ConcerningK, testing if an element of J0, n∗B−1Kn∗ sums to zero can be done in
O(n∗ log(n∗B)), and by dynamic programming, we can check if it is irreducible
in O((n∗B)n

∗
); thus K can be computed in O((n∗B)2n

∗
).

The set K (and its computation) will be useful later for proving Theorem 13.
In the following, we �rst focus on set D, whose cardinality is denoted cD. Indeed,
starting fromD, Algorithm 1 shows thatMZSP can be solved in O(nc2Dn

∗ log n+
nn
∗+2 logB). Since, by Proposition 2 above, cD is in O(nn

∗
), this shows that

MZSP is XP relatively to parameter n∗, as stated by the following theorem.

Theorem 11. MZSP is in XP when parameterized by n∗.

Proof. We provide an algorithm that runs in time O(nc2Dn
∗ log n+nn

∗+2 logB).
The proof derives from Algorithm 1, in which T is an array indexed by the
elements of D and which is initialized as follows: T [0] = 0, and for every other
vector v ∈ D, T [v] = −∞. We also recall that s is the multiplicity multiset of S.

Clearly, Algorithm 1 runs in O(nc2Dn
∗ log n) where cD = |D|, since nc2D ad-

ditions on vectors are realized, each taking O(n∗ log n) time. To this complexity,
O(nn

∗+2 logB) should be added for the precomputation of D. We now show
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that Algorithm 1 is correct. At the end of the algorithm, for any v ∈ D, T [v]
represents the largest number of elements of D that we can sum to obtain v.
Let us denote wv this value (thus T [v] = wv). For any i ∈ J1, nK, let P(i) be
the following property: for every v ∈ D, T [v] = wv if wv ∈ J0, iK. Our goal is
to prove, by induction on i, that P(i) holds for any i ∈ J1, nK. First, P(0) is
true since wv = 0 implies v = 0. Now let i ≥ 0, and let us assume P(i) holds.
Let v ∈ D. If wv ≤ i, then by induction hypothesis, we have T [v] = wv. If not,
then there exists u ∈ D such that wv−u = i, and hence T [v − u] = i. Hence, by
construction of T , T [v] = i + 1 = wv, which consequently proves that P(i + 1)
holds. By induction, P(i) holds for any i ∈ J1, nK. In particular, T [s] represents
the largest number of elements from D that can be summed in order to obtain s.
By Proposition 1, there exists ` elements of D whose sum is s i� there exists
a zero-sum partition of S, of cardinality `. Thus the cardinality of a maximum
zero-sum partition of S is T [s], which shows correctness of Algorithm 1. ut

As mentioned before, we conjecture MZSP to be W[1]-hard parameterized
by n∗. In contrast, we have the following result.

Theorem 12. MZSP is FPT when parameterized by n∗ + k.

Parameter maximum absolute value B. Recall that B is the greatest integer (in
absolute value) in an instance S of MZSP.

Theorem 13. MZSP is FPT when parameterized by B.

Proof. In order to prove the result, we will provide an ILPmodel for our problem.
We will then show that the number of variables of our ILP is a function of n∗

and B only, which, combined with the fact that ILP is FPT parameterized by
its number of variables [2, 9] and the fact that n∗ ≤ 2B, allows us to conclude.
Given an integer k, we are interested in solving k-MZSP, which asks whether
a size-k zero-sum partition of S exists. Let (S, k) be an instance of k-MZSP.
Let us number the n∗ distinct values in S a1, . . . , an∗ and let s1, . . . , sn∗ be their
respective multiplicities in S. Let cK = |K|, whereK is the set de�ned previously,
and let us compute K � recall that cK , by Proposition 2 and the discussion
that follows, satis�es cK = O((n∗B)n

∗
) �, and that K can be computed in

O((n∗B)2n
∗
). Our ILP based on the following cK variables xu, u ∈ K, where xu

represents the number of times element u appears in a zero-sum partition of S
of cardinality at least k. The ILP formulation of the problem is as follows.

k-MZSP (ILP model):

C.1 ∀u ∈ K xu ≥ 0
C.2 ∀i ∈ J1, n∗K

∑
u∈K uixu = si

C.3
∑
u∈K xu ≥ k

We now show correctness of our ILP model, by proving that there exists a
zero-sum partition ofMZSP of cardinality k i� the above ILP formulation admits
a solution.
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(⇒) Suppose S admits a size-k zero-sum partition. Then, by Proposition 1, we
know there exist ` ≤ k elements of K which sum to s, that we will call u1, . . . , u`.
For u ∈ K, let xu denote the number of times u appears in (u1, . . . , u`). Then,
by de�nition, ∀u ∈ K,xu ≥ 0,

∑
u∈K xuu = s and

∑
u∈K xu = ` ≥ k. Thus our

ILP formulation admits a solution.
(⇐) Conversely, suppose there exists xu for u ∈ K, which is a solution to the

above ILP formulation. Let us build (ui)i∈J1,`K, where element u appears exactly

xu times. Then, from C.2,
∑`
i=1 u

i = s. Moreover, from C.3, ` ≥ k. Thus, from
Proposition 1, there exists a size-k zero-sum partition of S.

Since n∗ ≤ 2B, and since ILP, parameterized by the number x of variables,
is FPT and can be solved in O∗

(
x2.5x+o(x)

)
[2, 9], and since here x = cK =

O((n∗B)n
∗
), the result follows. ut

4 Conclusion

We provided diverse algorithmic results concerning the MZSP problem: hard-
ness, (in)approximability and �xed-parameterized complexity considerations with
respect to parameters n,m, k, n∗ and B. Some questions about MZSP remain
unanswered. In particular, we conjecture MZSP to be W[1]-hard parameterized
by the number n∗ of distinct values in S; (dis)proving it remains open.

Acknowledgments. We thank Ton van der Zanden for his suggestions, in partic-
ular those concerning parameter b.
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