CLASS NUMBER FORMULAS FOR CERTAIN BIQUADRATIC FIELDS - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2023

CLASS NUMBER FORMULAS FOR CERTAIN BIQUADRATIC FIELDS

Résumé

We consider the class numbers of imaginary quadratic extensions $F(\sqrt{-p})$, for certain primes $p$, of totally real quadratic fields $F$ which have class number one. Using seminal work of Shintani, we obtain two elementary class number formulas for many such fields. The first expresses the class number as an alternating sum of terms that we generate from the coefficients of the power series expansions of two simple rational functions that depend on the arithmetic of $F$ and $p$. The second makes use of expansions of $1/p$, where $p$ is a prime such that $p \equiv 3 \pmod{4}$ and $p$ remains inert in $F$. More precisely, for a generator $\varepsilon_F$ of the totally positive unit group of $\mathcal{O}_F$, the base-$\varepsilon_{F}$ expansion of $1/p$ has period length $\ell_{F,p}$, and our second class number formula expresses the class number as a finite sum over disjoint cosets of size $\ell_{F,p}$.
Fichier principal
Vignette du fichier
46Article06.pdf (417.15 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Licence

Dates et versions

hal-04292835 , version 1 (17-11-2023)
hal-04292835 , version 2 (27-02-2024)
hal-04292835 , version 3 (28-02-2024)

Licence

Identifiants

Citer

Elizabeth Athaide, Emma Cardwell, Christy Thompson. CLASS NUMBER FORMULAS FOR CERTAIN BIQUADRATIC FIELDS. Hardy-Ramanujan Journal, 2023, 46, pp.63 -- 89. ⟨10.46298/hrj.2024.12573⟩. ⟨hal-04292835v2⟩
62 Consultations
321 Téléchargements

Altmetric

Partager

More