High-Frequency Repetitive Magnetic Stimulation Activates Bactericidal Activity of Macrophages via Modulation of p62/Keap1/Nrf2 and p38 MAPK Pathways - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Antioxidants Année : 2023

High-Frequency Repetitive Magnetic Stimulation Activates Bactericidal Activity of Macrophages via Modulation of p62/Keap1/Nrf2 and p38 MAPK Pathways

Résumé

The effects of repetitive magnetic stimulation (rMS) have predominantly been studied in excitable cells, with limited research in non-excitable cells. This study aimed to investigate the impact of rMS on macrophages, which are crucial cells in the innate immune defense. THP-1-derived macrophages subjected to a 5 min session of 10 Hz rMS exhibited increased Nrf2 activation and decreased Keap1 expression. We found that activation of the Nrf2 signaling pathway relied on rMS-induced phosphorylation of p62. Notably, rMS reduced the intracellular survival of Staphylococcus aureus in macrophages. Silencing Nrf2 using siRNA in THP-1-derived macrophages or utilizing Nrf2 knockout in alveolar macrophages abolished this effect. Additionally, rMS attenuated the expression of IL-1β and TNF-α inflammatory genes by S. aureus and inhibited p38 MAPK activation. These findings highlight the capacity of rMS to activate the non-canonical Nrf2 pathway, modulate macrophage function, and enhance the host’s defense against bacterial infection.

Dates et versions

hal-04290302 , version 1 (16-11-2023)

Identifiants

Citer

Therese Deramaudt, Ahmad Chehaitly, Théo Charrière, Julie Arnaud, Marcel Bonay. High-Frequency Repetitive Magnetic Stimulation Activates Bactericidal Activity of Macrophages via Modulation of p62/Keap1/Nrf2 and p38 MAPK Pathways. Antioxidants , 2023, 12 (9), pp.1695. ⟨10.3390/antiox12091695⟩. ⟨hal-04290302⟩
15 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More