Edge Separators for Graphs Excluding a Minor - Archive ouverte HAL
Article Dans Une Revue The Electronic Journal of Combinatorics Année : 2023

Edge Separators for Graphs Excluding a Minor

Résumé

We prove that every $n$-vertex $K_t$-minor-free graph $G$ of maximum degree $\Delta$ has a set $F$ of $O(t^2(\log t)^{1/4}\sqrt{\Delta n})$ edges such that every component of $G - F$ has at most $n/2$ vertices. This is best possible up to the dependency on $t$ and extends earlier results of Diks, Djidjev, Sýkora, and Vrťo (1993) for planar graphs, and of Sýkora and Vrťo (1993) for bounded-genus graphs. Our result is a consequence of the following more general result: The line graph of $G$ is isomorphic to a subgraph of the strong product $H \boxtimes K_{\lfloor p \rfloor}$ for some graph $H$ with treewidth at most $t-2$ and $p = \sqrt{(t-3)\Delta |E(G)|} + \Delta$.

Dates et versions

hal-04288100 , version 1 (15-11-2023)

Licence

Identifiants

Citer

Gwenaël Joret, William Lochet, Michał Seweryn. Edge Separators for Graphs Excluding a Minor. The Electronic Journal of Combinatorics, 2023, 30 (4), pp.4.12. ⟨10.37236/11744⟩. ⟨hal-04288100⟩
42 Consultations
0 Téléchargements

Altmetric

Partager

More