Global solutions to quadratic systems of stochastic reaction-diffusion equations in space-dimension two - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Global solutions to quadratic systems of stochastic reaction-diffusion equations in space-dimension two

Résumé

We prove the existence of global-in-time regular solutions to a system of stochastic quadratic reaction-diffusion equations. Global-in-time existence is based on a $L^\infty$-estimate obtained by an approach à la De Giorgi, as in [GoudonVasseur10]. The adaptation of this technique to the stochastic case requires in its final step an $L^2\ln(L^2)$-bound, furnished by an estimate by duality on the entropy inequality, as in [DesvillettesFellnerPierreVovelle07]. In our stochastic context, and similarly to [DebusscheRoselloVovelle2021], we need to solve a backward SPDE to exploit the duality technique
Fichier principal
Vignette du fichier
Periodic-Quadratic-RD-Sto3.pdf (560.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04283612 , version 1 (18-11-2023)
hal-04283612 , version 2 (05-04-2024)

Identifiants

Citer

Marta Leocata, Julien Vovelle. Global solutions to quadratic systems of stochastic reaction-diffusion equations in space-dimension two. 2023. ⟨hal-04283612v2⟩
81 Consultations
54 Téléchargements

Altmetric

Partager

More