Extracting Definienda in Mathematical Scholarly Articles with Transformers
Résumé
We consider automatically identifying the defined term within a mathematical definition from the text of an academic article. Inspired by the development of transformer-based natural language processing applications, we pose the problem as (a) a token-level classification task using fine-tuned pre-trained transformers; and (b) a question-answering task using a generalist large language model (GPT). We also propose a rule-based approach to build a labeled dataset from the L A T E X source of papers. Experimental results show that it is possible to reach high levels of precision and recall using either recent (and expensive) GPT 4 or simpler pre-trained models fine-tuned on our task.
Fichier principal
jiang2023extracting.pdf (212.3 Ko)
Télécharger le fichier
Paper_6_WIESP2023.pdf (204.24 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|