Improving a shoreline forecasting model with Symbolic Regression - Archive ouverte HAL Access content directly
Conference Papers Year : 2023

Improving a shoreline forecasting model with Symbolic Regression

Abstract

Given the current context of climate change and the increasing population densities at coastal zones around the globe, there is an increasing need to be able to predict the development of our coasts. Recent advances in artificial intelligence allow for automatic analysis of observational data. Symbolic Regression (SR) is a type of Machine Learning algorithm that aims to find interpretable symbolic expressions that can explain relations in the data. In this work, we aim to study the problem of forecasting shoreline change using SR. We make use of Cartesian Genetic Programming (CGP) in order to encode and improve upon ShoreFor, a physical shoreline prediction model. During training, CGP individuals are evaluated and selected according to their predictive score at five different coastal sites. This work presents a comparison between a CGP-evolved model and the base ShoreFor model. In addition to evolution's ability to produce well-performing models, it demonstrates the usefulness of SR as a research tool to gain insight into the behaviors of shorelines in various geographical zones.
Fichier principal
Vignette du fichier
improving-a-shoreline-forecasting-model-with-symbolic-regression.pdf (662.13 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04281530 , version 1 (13-11-2023)

Identifiers

  • HAL Id : hal-04281530 , version 1

Cite

Mahmoud Al Najar, Rafael Almar, Erwin W J Bergsma, Jean-Marc Delvit, Dennis G Wilson. Improving a shoreline forecasting model with Symbolic Regression. Tackling Climate Change with Machine Learning, ICLR 2023, May 2023, Kigali, Rwanda. ⟨hal-04281530⟩
61 View
81 Download

Share

Gmail Mastodon Facebook X LinkedIn More