Three-qubit-embedded split Cayley hexagon is contextuality sensitive - Archive ouverte HAL
Article Dans Une Revue Scientific Reports Année : 2022

Three-qubit-embedded split Cayley hexagon is contextuality sensitive

Résumé

In this article, we show that sets of three-qubit quantum observables obtained by considering both the classical and skew embeddings of the split Cayley hexagon of order two into the binary symplectic polar space of rank three can be used to detect quantum state-independent contextuality. This reveals a fundamental connection between these two appealing structures and some fundamental tools in quantum mechanics and quantum computation. More precisely, we prove that the complement of a classically embedded hexagon does not provide a Mermin–Peres-like proof of the Kochen–Specker theorem whereas that of a skewly-embedded one does.
Fichier principal
Vignette du fichier
2202.00726.pdf (344.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Domaine public

Dates et versions

hal-04275546 , version 1 (08-11-2023)

Licence

Domaine public

Identifiants

Citer

Frédéric Holweck, Henri de Boutray, Metod Saniga. Three-qubit-embedded split Cayley hexagon is contextuality sensitive. Scientific Reports, 2022, 12 (1), pp.8915. ⟨10.1038/s41598-022-13079-3⟩. ⟨hal-04275546⟩

Collections

ANR
14 Consultations
30 Téléchargements

Altmetric

Partager

More