ML-Enhanced Generalized Langevin Equation for Transient Anomalous Diffusion in Polymer Dynamics - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

ML-Enhanced Generalized Langevin Equation for Transient Anomalous Diffusion in Polymer Dynamics

Résumé

In this work, we introduce an ML framework to generate long-term single-polymer dynamics by exploiting short-term trajectories from molecular dynamics (MD) simulations of homopolymer melts. Even with current advances in machine learning for MD, these polymeric materials are difficult to simulate and characterize due to prohibitive computational costs when long timescales are involved. Our method relies on a 3D neural autoregressive (NAR) model for collective variables (CVs), which enhances the Generalized Langevin Equation capabilities in modeling diffusion phenomena. ML-GLE is capable of reproducing long-term single polymer statistical properties, predicting the diffusion coefficient, and resulting in an enormous acceleration in terms of simulation time. Moreover, it is also scalable with system size
Fichier principal
Vignette du fichier
NeurIPS_ML4PS_2023_24 (1).pdf (8.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04274138 , version 1 (02-07-2024)

Licence

Identifiants

  • HAL Id : hal-04274138 , version 1

Citer

Gian-Michele Cherchi, Alain Dequidt, Arnaud Guillin, Vincent Barra, Nicolas Martzel, et al.. ML-Enhanced Generalized Langevin Equation for Transient Anomalous Diffusion in Polymer Dynamics. NeurIPS 2023 Workshop: Machine Learning and the Physical Sciences, Dec 2023, NewOrleans, United States. ⟨hal-04274138⟩
76 Consultations
12 Téléchargements

Partager

More