Control of Active Brownian Particles: An Exact Solution
Résumé
Control of stochastic systems is a challenging open problem in statistical physics, with potential applications in a wealth of systems from biology to granulates. Unlike most cases investigated so far, we aim here at controlling a genuinely out-of-equilibrium system, the two dimensional Active Brownian Particles model in a harmonic potential, a paradigm for the study of self-propelled bacteria. We search for protocols for the driving parameters (stiffness of the potential and activity of the particles) bringing the system from an initial passive-like stationary state to a final active-like one, within a chosen time interval. The exact analytical results found for this prototypical system of self-propelled particles brings control techniques to a wider class of out-of-equilibrium systems.