Synthesis of 2D perovskite crystals via progressive transformation of quantum well thickness - Archive ouverte HAL
Article Dans Une Revue Nature Synthesis Année : 2023

Synthesis of 2D perovskite crystals via progressive transformation of quantum well thickness

Jin Hou
Wenbin Li
Hao Zhang
Siraj Sidhik
Jared Fletcher
Surendra B. Anantharaman
Xinting Shuai
Anamika Mishra
Jean-Christophe Blancon
Claudine Katan
Deep Jariwala
Mercouri Kanatzidis

Résumé

Two-dimensional (2D) multilayered halide perovskites have emerged as a platform for understanding organic–inorganic interactions, tuning quantum confinement effects and realizing efficient and durable optoelectronic devices. However, reproducibly synthesizing 2D perovskite crystals with a perovskite-layer thickness (quantum well thickness, n-value) >2 using existing crystal growth methods is challenging. Here we demonstrate a synthetic method, termed kinetically controlled space confinement, for the growth of phase-pure Ruddlesden–Popper and Dion–Jacobson 2D perovskites. Phase-pure growth is achieved by progressively increasing the temperature (for a fixed time) or the crystallization time (at a fixed temperature), which allows for control of the crystallization kinetics. In s it u p ho toluminescence spectroscopy and imaging suggest that the controlled increase in n-value (from lower to higher values of n = 4, 5 and 6) occurs due to intercalation of excess precursor ions. Based on 250 experimental data sets, phase diagrams for both Ruddlesden–Popper and Dion–Jacobson perovskites have been constructed to predict the growth of 2D phases with specific n-values, facilitating the production of 2D perovskite crystals with desired layer thickness.
Fichier principal
Vignette du fichier
submitted_Nature_Synthesis_withDOI.pdf (1.24 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04262698 , version 1 (31-10-2023)

Identifiants

Citer

Jin Hou, Wenbin Li, Hao Zhang, Siraj Sidhik, Jared Fletcher, et al.. Synthesis of 2D perovskite crystals via progressive transformation of quantum well thickness. Nature Synthesis, 2023, 3 (2), pp.265-275. ⟨10.1038/s44160-023-00422-3⟩. ⟨hal-04262698⟩
140 Consultations
396 Téléchargements

Altmetric

Partager

More