Cuspidal $\ell$-modular representations of $\mathrm{GL}_n(F)$ distinguished by a Galois involution - Archive ouverte HAL
Preprints, Working Papers, ... Year : 2023

Cuspidal $\ell$-modular representations of $\mathrm{GL}_n(F)$ distinguished by a Galois involution

Abstract

Let $F/F_0$ be a quadratic extension of non-Archimedean locally compact fields of residual characteristic $p\neq2$ with Galois automorphism $\sigma$, and let $R$ be an algebraically closed field of characteristic $\ell\notin\{0,p\}$. We reduce the classification of $\mathrm{GL}_n(F_0)$-distinguished cuspidal $R$-representations of $\mathrm{GL}_n(F)$ to the level $0$ setting. Moreover, under a parity condition, we give necessary conditions for a $\sigma$-selfdual cuspidal $R$-representation to be distinguished. Finally, we classify the distinguished cuspidal $\overline{\mathbb{F}}_{\ell}$-representations of $\mathrm{GL}_n(F)$ having a distinguished cuspidal lift to $\overline{\mathbb{Q}}_\ell$.
Fichier principal
Vignette du fichier
NRV_accepted.pdf (814.94 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04257561 , version 1 (25-10-2023)
hal-04257561 , version 2 (07-11-2024)

Identifiers

  • HAL Id : hal-04257561 , version 2

Cite

Robert Kurinczuk, Nadir Matringe, Vincent Sécherre. Cuspidal $\ell$-modular representations of $\mathrm{GL}_n(F)$ distinguished by a Galois involution. 2024. ⟨hal-04257561v2⟩
26 View
19 Download

Share

More