On bifurcation of statistical properties of partially hyperbolic endomorphisms
Résumé
Abstract We give an example of a path-wise connected open set of $C^{\infty }$ partially hyperbolic endomorphisms on the $2$ -torus, on which the (unique) Sinai–Ruelle–Bowen (SRB) measure exists for each system and varies smoothly depending on the system, while the sign of its central Lyapunov exponent changes.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|