Compacting an assembly of soft balls far beyond the jammed state: Insights from three-dimensional imaging - Archive ouverte HAL
Article Dans Une Revue Physical Review E Année : 2023

Compacting an assembly of soft balls far beyond the jammed state: Insights from three-dimensional imaging

Résumé

Very soft grain assemblies have unique shape-changing capabilities that allow them to be compressed far beyond the rigid jammed state by filling void spaces more effectively. However, accurately following the formation of these systems by monitoring the creation of new contacts, monitoring the changes in grain shape, and measuring grain-scale stresses is challenging. We developed an experimental method that overcomes these challenges and connects their microscale behavior to their macroscopic response. By tracking the local strain energy during compression, we reveal a transition from granular-like to continuous-like material. Mean contact geometry is shown to vary linearly with the packing fraction, which is supported by a mean field approximation. We also validate a theoretical framework which describes the compaction from a local view. Our experimental framework provides insights into the granular micromechanisms and opens perspectives for rheological analysis of highly deformable grain assemblies in various fields ranging from biology to engineering.
Fichier principal
Vignette du fichier
Bares_al_PRE_2023.pdf (3.95 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04255665 , version 1 (24-10-2023)

Identifiants

Citer

Jonathan Barés, Manuel Cárdenas-Barrantes, Gustavo Pinzón, Edward Andò, Mathieu Renouf, et al.. Compacting an assembly of soft balls far beyond the jammed state: Insights from three-dimensional imaging. Physical Review E , 2023, 108 (4), pp.044901. ⟨10.1103/PhysRevE.108.044901⟩. ⟨hal-04255665⟩
46 Consultations
138 Téléchargements

Altmetric

Partager

More