Multimodal Neural Radiance Field for In-Hand Robot Manipulation Tasks of Transparent Objects - Archive ouverte HAL
Poster De Conférence Année : 2023

Multimodal Neural Radiance Field for In-Hand Robot Manipulation Tasks of Transparent Objects

Résumé

In recent years, there has been significant progress in robot manipulation research, but challenges persist when it comes to tracking transparent objects using RGB-D sensors. To address this, polarimetric imaging technology has gained popularity due to cost-effective sensors becoming more accessible. This technology, which analyzes the polarization properties of light, offers valuable insights into object properties, aids in material differentiation, depth estimation, and precise pose estimation, even in challenging lighting conditions. A novel multimodal perception approach is introduced in this study, utilizing a learning-based neural radiance field method based on multimodal data to overcome the limitations of RGB-D imaging when dealing with transparent objects during in-hand manipulation (Kerr et al.)
Fichier principal
Vignette du fichier
abstrct_poster (1).pdf (359.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04255537 , version 1 (07-02-2024)

Licence

Domaine public

Identifiants

  • HAL Id : hal-04255537 , version 1

Citer

Camille Taglione, Carlos Mateo, Christophe Stolz. Multimodal Neural Radiance Field for In-Hand Robot Manipulation Tasks of Transparent Objects. Journées Nationales de la Recherche en Robotique (JNRR 2023), Oct 2023, Moliets, France. . ⟨hal-04255537⟩
121 Consultations
41 Téléchargements

Partager

More