Generating robust counterfactual explanations - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Generating robust counterfactual explanations

Générer des explications contrefactuelles robustes

Résumé

Counterfactual explanations have become a mainstay of the XAI field. This particularly intuitive statement allows the user to understand what small but necessary changes would have to be made to a given situation in order to change a model prediction. The quality of a counterfactual depends on several criteria: realism, actionability, validity, robustness, etc. In this paper, we are interested in the notion of robustness of a counterfactual. More precisely, we focus on robustness to counterfactual input changes. This form of robustness is particularly challenging as it involves a trade-off between the robustness of the counterfactual and the proximity with the example to explain. We propose a new framework, CROCO, that generates robust counterfactuals while managing effectively this trade-off, and guarantees the user a minimal robustness. An empirical evaluation on tabular datasets confirms the relevance and effectiveness of our approach.
Fichier principal
Vignette du fichier
generating_robust_counterfactuals.pdf (783.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04255500 , version 1 (24-10-2023)

Licence

Identifiants

  • HAL Id : hal-04255500 , version 1

Citer

Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi, Alexandre Termier. Generating robust counterfactual explanations. ECML/PKDD - European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2023, Turin (Italie), Italy. pp.1-16. ⟨hal-04255500⟩
94 Consultations
97 Téléchargements

Partager

More