GEOMETRIC PROPERTIES OF PARTIALLY HYPERBOLIC MEASURES AND APPLICATIONS TO MEASURE RIGIDITY - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

GEOMETRIC PROPERTIES OF PARTIALLY HYPERBOLIC MEASURES AND APPLICATIONS TO MEASURE RIGIDITY

Alex Eskin
  • Fonction : Auteur
  • PersonId : 961077
Rafael Potrie
  • Fonction : Auteur
  • PersonId : 999454

Résumé

We give a geometric characterization of the quantitative joint non-integrability, introduced by Katz in [Ka], of strong stable and unstable bundles of partially hyperbolic measures and sets in dimension 3. This is done via the use of higher order templates for the invariant bundles. Using the recent work of Katz, we derive some consequences, including the measure rigidity of uu-states and the existence of physical measures.
Fichier principal
Vignette du fichier
2302.12981.pdf (539.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04255429 , version 1 (24-10-2023)

Identifiants

  • HAL Id : hal-04255429 , version 1

Citer

Alex Eskin, Rafael Potrie, Zhiyuan Zhang. GEOMETRIC PROPERTIES OF PARTIALLY HYPERBOLIC MEASURES AND APPLICATIONS TO MEASURE RIGIDITY. 2023. ⟨hal-04255429⟩
51 Consultations
24 Téléchargements

Partager

More