Graph-based multimodal multi-lesion DLBCL treatment response prediction from PET images - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Graph-based multimodal multi-lesion DLBCL treatment response prediction from PET images

Emmanuel Itti

Résumé

Diffuse Large B-cell Lymphoma (DLBCL) is a lymphatic cancer involving one or more lymph nodes and extranodal sites. Its diagnostic and follow-up rely on Positron Emission Tomography (PET) and Computed Tomography (CT). After diagnosis, the number of nonresponding patients to standard front-line therapy remains significant (30-40%). This work aims to develop a computer-aided approach to identify high-risk patients requiring adapted treatment by efficiently exploiting all the information available for each patient, including both clinical and image data. We propose a method based on recent graph neural networks that combine imaging information from multiple lesions, and a cross-attention module to integrate different data modalities efficiently. The model is trained and evaluated on a private prospective multicentric dataset of 583 patients. Experimental results show that our proposed method outperforms classical supervised methods based on either clinical, imaging or both clinical and imaging data for the 2-year progression-free survival (PFS) classification accuracy.
Fichier principal
Vignette du fichier
AI4TREAT_article-preprint.pdf (833.85 Ko) Télécharger le fichier
main.pdf (418.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04254481 , version 1 (24-10-2023)

Identifiants

Citer

Oriane Thiery, Mira Rizkallah, Clément Bailly, Caroline Bodet-Milin, Emmanuel Itti, et al.. Graph-based multimodal multi-lesion DLBCL treatment response prediction from PET images. International Conference on Medical Image Computing and Computer-Assisted Intervention, Oct 2023, Vancouver, Canada. pp.103-112, ⟨10.1007/978-3-031-47425-5_10⟩. ⟨hal-04254481⟩
74 Consultations
69 Téléchargements

Altmetric

Partager

More