Algorithme EM régularisé - Archive ouverte HAL
Conference Papers Year : 2023

Algorithme EM régularisé

Pierre Houdouin
  • Function : Author
  • PersonId : 1131007
Esa Ollila
  • Function : Author
  • PersonId : 1117391

Abstract

Expectation-Maximization (EM) algorithm is a widely used iterative algorithm for computing maximum likelihood estimate when dealing with Gaussian Mixture Model (GMM). When the sample size is smaller than the data dimension, this could lead to a singular or poorly conditioned covariance matrix and, thus, to performance reduction. This paper presents a regularized version of the EM algorithm that efficiently uses prior knowledge to cope with a small sample size. This method aims to maximize a penalized GMM likelihood where regularized estimation may ensure positive definiteness of covariance matrix updates by shrinking the estimators towards some structured target covariance matrices. Finally, experiments on real data highlight the good performance of the proposed algorithm for clustering purposes
Fichier principal
Vignette du fichier
EM fr.pdf (940.74 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04254186 , version 1 (19-12-2023)

Identifiers

Cite

Pierre Houdouin, Matthieu Jonckheere, Frédéric Pascal, Esa Ollila. Algorithme EM régularisé. GRETSI 2023 - XXIXème Colloque Francophone de Traitement du Signal et des Images, Aug 2023, Grenoble, France. ⟨hal-04254186⟩
137 View
51 Download

Altmetric

Share

More