Weakly Supervised Marine Animal Detection from Remote Sensing Images Using Vector-Quantized Variational Autoencoder - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Weakly Supervised Marine Animal Detection from Remote Sensing Images Using Vector-Quantized Variational Autoencoder

Résumé

This paper studies a reconstruction-based approach for weaklysupervised animal detection from aerial images in marine environments. Such an approach leverages an anomaly detection framework that computes metrics directly on the input space, enhancing interpretability and anomaly localization compared to feature embedding methods. Building upon the success of Vector-Quantized Variational Autoencoders in anomaly detection on computer vision datasets, we adapt them to the marine animal detection domain and address the challenge of handling noisy data. To evaluate our approach, we compare it with existing methods in the context of marine animal detection from aerial image data. Experiments conducted on two dedicated datasets demonstrate the superior performance of the proposed method over recent studies in the literature. Our framework offers improved interpretability and localization of anomalies, providing valuable insights for monitoring marine ecosystems and mitigating the impact of human activities on marine animals.
Fichier principal
Vignette du fichier
IGARSS2023_vqvae_Semmacape.pdf (915.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04253903 , version 1 (23-10-2023)

Identifiants

Citer

Minh-Tan Pham, Hugo Gangloff, Sébastien Lefèvre. Weakly Supervised Marine Animal Detection from Remote Sensing Images Using Vector-Quantized Variational Autoencoder. IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Jul 2023, Pasadena, United States. pp.5559-5562, ⟨10.1109/IGARSS52108.2023.10282672⟩. ⟨hal-04253903⟩
75 Consultations
50 Téléchargements

Altmetric

Partager

More