A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity - Archive ouverte HAL
Article Dans Une Revue eLife Année : 2023

A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity

Résumé

Antigen immunogenicity and the specificity of binding of T-cell receptors to antigens are key properties underlying effective immune responses. Here we propose diffRBM, an approach based on transfer learning and Restricted Boltzmann Machines, to build sequence-based predictive models of these properties. DiffRBM is designed to learn the distinctive patterns in amino-acid composition that, on the one hand, underlie the antigen’s probability of triggering a response, and on the other hand the T-cell receptor’s ability to bind to a given antigen. We show that the patterns learnt by diffRBM allow us to predict putative contact sites of the antigen-receptor complex. We also discriminate immunogenic and non-immunogenic antigens, antigen-specific and generic receptors, reaching performances that compare favorably to existing sequence-based predictors of antigen immunogenicity and T-cell receptor specificity.
Fichier principal
Vignette du fichier
2022.12.06.519259.full.pdf (4.24 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04252230 , version 1 (04-04-2024)

Licence

Identifiants

Citer

Barbara Bravi, Andrea Di Gioacchino, Jorge Fernandez-De-Cossio-Diaz, Aleksandra Walczak, Thierry Mora, et al.. A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity. eLife, 2023, 12, pp.e.85126. ⟨10.7554/eLife.85126⟩. ⟨hal-04252230⟩
35 Consultations
9 Téléchargements

Altmetric

Partager

More