Strongly stratifying ideals, Morita contexts and Hochschild homology - Archive ouverte HAL
Article Dans Une Revue Journal of Algebra Année : 2023

Strongly stratifying ideals, Morita contexts and Hochschild homology

Résumé

We consider stratifying ideals of finite dimensional algebras in relation with Morita contexts. A Morita context is an algebra built on a data consisting of two algebras, two bimodules and two morphisms. For a strongly stratifying Morita context - or equivalently for a strongly stratifying ideal - we show that Han’s conjecture holds if and only if it holds for the diagonal subalgebra. The main tool is the Jacobi-Zariski long exact sequence. One of the main consequences is that Han’s conjecture holds for an algebra admitting a strongly (co-)stratifying chain whose steps verify Han’s conjecture.

Mots clés

Dates et versions

hal-04252063 , version 1 (31-03-2023)
hal-04252063 , version 2 (20-10-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Claude Cibils, Marcelo Lanzilotta, Eduardo Marcos, Andrea Solotar. Strongly stratifying ideals, Morita contexts and Hochschild homology. Journal of Algebra, 2023, 591, pp.117-141. ⟨10.1016/j.jalgebra.2023.09.044⟩. ⟨hal-04252063v2⟩
61 Consultations
0 Téléchargements

Altmetric

Partager

More