Pragmatic isomorphism proofs between coq representations: application to lambda-term families
Résumé
There are several ways to formally represent families of data, such as lambda terms, in a type theory such as the dependent type theory of Coq. Mathematical representations are very compact ones and usually rely on the use of dependent types, but they tend to be difficult to handle in
practice. On the contrary, implementations based on a larger (and simpler) data structure combined with a restriction property are much
easier to deal with.
Fichier principal
906251f5-cd51-46c3-98a7-79cb0b561fbc-author.pdf (683.22 Ko)
Télécharger le fichier
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
DISC Femto-st : Connectez-vous pour contacter le contributeur
https://hal.science/hal-04245455
Soumis le : mardi 17 octobre 2023-10:03:37
Dernière modification le : mardi 17 septembre 2024-15:52:37
Archivage à long terme le : jeudi 18 janvier 2024-18:20:50
Citer
Catherine Dubois, Nicolas Magaud, Alain Giorgetti. Pragmatic isomorphism proofs between coq representations: application to lambda-term families. 28th International Conference on Types for Proofs and Programs (TYPES 2022), Jun 2022, Nantes, France. pp.11:1-11:19, ⟨10.4230/LIPIcs.TYPES.2022.11⟩. ⟨hal-04245455⟩
Collections
82
Consultations
31
Téléchargements